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GENERAL INFORMATION

The doctoral thesis is devoted to the study of systems of ordinary

differential equations that arise in the theory of complex networks. The

gene regulatory networks (GRN networks) and artificial neural networks

(ANN networks) are networks of this type.

Keywords: differential equations, mathematical modeling, gene regu-

latory networks, neuronal networks, phase space, attractors, bifurcations.

The object of the promotional work is a certain class of systems of

ordinary differential equations (ODE). These systems have a special quasi-

linear structure and contain both linear and nonlinear parts. The nonlinear

part is represented by sigmoidal functions. The Gompertz function is se-

lected of them.

Aims of research: The aim of the work is to study one class of systems

of ordinary differential equations that arise in the theory of gene networks

and artificial neural networks. These systems consist of nonlinear and

linear parts. The nonlinear part is represented by sigmoidal functions,

of which the Gompertz function and the hyperbolic tangent function are

used in the work. Special attention is paid to the study of the properties

of attractors, the analysis of the evolution of systems, and the prediction

of the behavior of solutions.

The research tasks:

• define a system of ODE modeling GRN and using the Gompertz func-

tion as a nonlinearity;

• obtain formulas for the study of the critical points of GRN type sys-

tems;

• compare the results for GRN systems using Gompertz function with

similar systems using other sigmoidal functions;

• transfer the results obtained for GRN systems to systems arising in

ANN theory and containing the hyperbolic tangents function as a
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nonlinearity;

• compare the results obtained for GRN systems with the results ob-

tained for ANN systems;

• compare the results of examples of periodic attractors in GRN and

ANN systems;

• prove the existence of periodic attractors for GRN and ANN systems

focusing on similarity of both systems;

• prove the existence of periodic attractors for GRN and ANN systems

of order two, three and higher;

• detected sensitive dependence of solutions to ANN systems by calcu-

lating Lyapunov exponents;

• provide some observations and remarks on the problem of controlla-

bility and management of GRN and ANN systems.

Methods used in the study:

• linearization and local analysis of critical points;

• constructing periodic attractors by using Andronov–Hopf bifurcation

from stable focus;

• constructing systems of higher dimensions by using low-dimensional

blocks and then coupling systems by adding new elements;

• geometrical analysis of phase plane and phase spaces considering the

nullclines;

• analyzing phase spaces and vector fields associated with GRN and

ANN systems with respect to invariant sets;

• detecting of sensitive dependence of solutions to GRN and ANN sys-

tems by calculating Lyapunov exponents;
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• extensive use of computational experiments in studying GRN and

ANN systems.
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MAIN RESULTS

The promotional work is a set of scientific publications written and pub-

lished during the years 2015 - 2024. All papers are published in scientific

journals or in article books of some conferences. The set of publications

contains 14 ([29]-[33], [35]-[41], [43], [54]) scientific articles, seven ([35], [36],

[38], [40], [41], [43], [54]) were published in the journal indexed in SCOPUS

and one of them ([39]) has been published in the Axioms MDPI (indexed

in WoS, Q2) journal.

The results were communicated at several conferences of different levels,

including 11 International Scientific Conferences:

1. 82 st International Scientific Conference of the University of Latvia

with the paper “REMARKS ON MATHEMATICAL MODELING OF

GENE AND NEURONAL NETWORKS” (Riga, February 23, 2024);

2. International Conference of Numerical Analysis and Applied Mathe-

matics 2023 (ICNAAM 2023) with the report “On control over system

arising in the theory of neuronal networks” (Crete, Greece, September

11-17, 2023);

3. 26 th International Conference on Mathematical Modelling and Analy-

sis with the report “COMPARATIVE ANALYSIS OF MODELS OF

GENETIC AND NEURONAL NETWORKS” (Jurmala, May 30 -

June 2, 2023);

4. 65 st International Scientific Conference of Daugavpils University with

the paper “On linearization on some system arising in the theory of

neural networks, in the neighborhood of a critical point ” (Daugavpils,

April 20, 2023);

5. 81 st International Scientific Conference of the University of Latvia

with the paper “On computation of parameters in Artificial Neural

Networks mathematical models” (Riga, February 24, 2023);
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6. 61 st International Conference on VIBROENGINEERING with the

paper “On a three-dimensional neural network model” (Udaipur, In-

dia, December 12-13, 2022);

7. International Liberty Interdisciplinary Studies Conference with the

paper “MATHEMATICAL MODELING of THREE-DIMENSIONAL

GENETIC REGULATORY NETWORKS USING DIFFERENT SIG-

MOIDAL FUNCTIONS” (Manhattan, New York, January 16-17,

2022);

8. 1 st International Symposium on Recent Advances in Fundamental

and Applied Sciences (ISFAS-2021) with the paper “MATHEMAT-

ICAL MODELLING OF GRN USING DIFFERENT SIGMOIDAL

FUNCTIONS” ( Erzurum, Turkey, September 10-12, 2021);

9. 79 th Scientific Conference of the University of Latvia with the paper

“Andronov - Hopf bifurcation in 2D systems” (Riga, February 26,

2021);

10. 78 th Scientific Conference of the University of Latvia with the paper

“Gompertz function in the model of gene regulation network” (Riga,

February 28, 2020);

11. 77 th Scientific Conference of the University of Latvia with the paper

“Z-shaped isoclines in GRN differential system” (Riga, February 18,

2019);

12. 76 th Scientific Conference of the University of Latvia with the paper

“Gompertz sigmoidal function in the 2-component network model”

(Riga, February 23, 2018);

13. 60 th International Scientific Conference of Daugavpils University with

the paper “CRITICAL POINTS FOR SIGMOIDAL FUNCTION”

(Daugavpils, April 27, 2018);
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14. 12 th Latvian Mathematical Conference with the paper “CRITICAL

POINTS FOR SIGMOIDAL FUNCTION” (Ventspils, April 13- 14,

2018);

15. 11 th Latvian Mathematical Conference with the paper “Solvability

conditions of the resonant problem” (Daugavpils, April 14, 2016);

16. 57 th International Scientific Conference of Daugavpils University with

the paper “Dirichlet boundary value problem for one system of differ-

ential equations” (Daugavpils, April 12, 2015);

17. 56 th International Scientific Conference of Daugavpils University with

the paper “The Dirichlet boundary value problem for a system of two

second-order differential equations” (Daugavpils, April 8, 2014).

9



1 Introduction

In this work, we consider problems arising in mathematical modeling of

networks. We focus on modeling gene regulatory networks and artificial

neuronal networks. Networks of this type are everywhere. They consist

generally of elements which are usually called nodes and links between

nodes. The nature of networks may be different. Networks are present in

nature, human society, literally everywhere. They can be enormously large,

like networks of astronomical objects, stars, planets, and galaxies. At the

same time, they can be very small and even unrecognizable and not seen

by unarmed eyes, for example, the gene networks in a living organism. To

understand the structure and principles of functioning of networks in na-

ture, scientists should collect huge files of the results of observations. These

data are to be collected, systematized, analyzed, and classified. Sometimes

and even usually this is a very hard task. To make this task easier, the

mathematical modeling can be used. As usually, the mathematical models

are objects existing in the virtual realm of mathematics. These objects

should be created, step-by-step verifying their adequacy according to the

researched phenomena. Experiments should be done in a model. The

analysis is of a mathematical nature, and the mathematical tools, stan-

dard or created exactly for a particular object of the study, are to be used

to analyze the model. The results are recorded, systematized, and classi-

fied. Hypotheses are formulated in order to understand better the object

of the study. Hypotheses are to be verified, and either to be confirmed or

disproved.

Simple networks, like groups of humans, small populations, a number

of static objects can be investigated using the mathematical apparatus of

the graph theory. Graphs consist of vertices, edges between vertices, and

characteristics of both vertices and edges. Sometimes graphs can be visu-

alized and analyzed straightforwardly. For networks of large size, this can

be a complicated task. As an example, one might think of transportation
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networks, networks of industrial objects, and so on.

The structure and properties of networks may change over time, and

these are the more interesting networks. Based on the analysis of the past

of a network, and knowing its main principles of functioning, one may think

about predicting of future states of networks. Depending on the nature of

a network, this may be the most important challenge.

To illustrate this, let us speak about genetic networks. The existence

of genetic networks was not known before the great finding in the field of

genetics and biology in general. Now it is known, that genetic networks

are present in any cell of any living organism. It can be imagined as

a collection of nodes, which are to be called genes, which communicate

with each other. How do they do this? They are sending messages in

the form of proteins. These messages are accepted by other genes, and

the whole network elaborates common reactions. For instance, a genetic

network is responsible for the reaction of an organism to diseases. They

govern the most important processes in the growing animal or human.

Their activity is decisive in morphogenesis, the process of formation of

the internal organs. Due to the investigation of geneticists, biologists,

and zoologists, the spots on a leopard, and strips on tigers and zebras

appear as the result of programming in genomics, and the formation of

these properties takes place under the control of gene networks.

Another example of a network is a collection (huge) of neurons in a

human’s brain. Neurons accept electrical signals from other elements of a

network and produce their own signals, which are transferred further. The

collective reaction, quick or not, depending on a situation, helps a human

to perform its usual functions, like work, communicating with society, and

solving creative and algorithmically defined problems. It was amazing that

a human can easily recognize images, which is a difficult task for robots

and controllable devices. This type of network belongs to biological neural

networks. There are still many problems that can be solved by humans
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better than a computer or other automaton can do. Attempts to copy

the work of a human brain have led to artificial neural networks (ANN

briefly). ANN is a collection of units, which are called artificial neurons.

These units are connected. They can transmit an accepted signal to other

units. An artificial neuron receives signals and transmits them after being

processed to other neurons connected to it.

The dynamics of both types of networks, GRN (gene regulatory net-

works) and ANN can be modeled by ordinary differential equations. Each

element of a network is denoted by xi. The physical meaning of xi is, of

course, different for GRN and ANN. Mathematics as a fundamental sci-

ence that knows many examples of physical, mechanical, chemical, etc.

processes, which are quite different in nature, but described by similar

mathematical models. This is the case for GRN and ANN. Both have a

finite, but probably very large number of elements, which we will denote

by xi. Each xi can be measured (mostly imaginary) by a number, which is

denoted also xi, but it is dependent on time, xi(t). So an investigator deals

with a number of functions, which are dependent on each other. The col-

lection of xi(t), i = 1, 2, . . . , forms the phase space, which mathematically

is Euclidian. The relations between elements xi should be described. One,

very rough, way to do this, is to define the so called regulatory matrix,

which is denoted usually W. It is n × n matrix, where n is the number of

elements in a network. The element wij is a number, that characterizes

the influence of an element xj on the element xi. The convention is, that

positive elements of the matrix W mean activation, negativity means re-

pression (also called inhibition), and zero value of wij means no relation.

Once these preparations are made, the system of differential equations can

be produced, which describes the dynamics of a network, since functions

xi(t) change in time following the rules, defined by a system of ordinary

differential equations (ODE briefly). The great feature of studying the rel-

ative system of ODE is that one might use the mathematical apparatus for
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the study of such systems and to make predictions on the behavior of solu-

tions xi(t), which are considered now as solutions in a system of ODE. The

mentioned systems were defined earlier for GRN networks, and for ANN

networks. When we look at those systems, we observe certain similarities.

That means that these systems can be studied simultaneously, and results

obtained for GRN systems can be used for the study of ANN systems, and

vice versa.

This is the main thrust of the presented work.

2 Gompertz function in the model of gene regulatory

networks

In the theory of gene regulatory networks, differential systems are of the

type

x′i = f(
∑

wijxj)− xi. (2.1)

This system describes the interrelation between elements (genes) of a gene

network. We omit the mechanism of this interrelation and focus on the

mathematical aspect. The function f(z) in this model is a continuous

bounded monotonically increasing function (that is called sigmoidal reg-

ulatory function). Matrix W consists of entries describing the relation

between nodes of the networks. There are various functions f possessing

the desired properties. For instance, the function f(z) = 1
1+e−µz meets the

requirements. The argument z is substituted by z = Σwijxj−θ and it rep-

resents the input on a gene with threshold θ for increasing xi. The function

f(z) is a sigmoidal (monotone and bounded) function and 2× 2 matrix W

consists of entries that take values from the set {−1, 0, 1}. Systems of this

kind appear in gene regulatory theory. The structure of attracting sets is

studied.

System (2.2), when containing n equations, describes the dynamics of

the artificial network composed of n elements. The interrelation between
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elements of a network is described by the regulatory matrix W . The posi-

tive element aij means activation of i-th element by an j-th element. The

negativity of an element wij means inhibition, and zero element means no

relation. The absolute value of an element means the intensity of space.

In this article, we consider only a two-dimensional case (a network with

two elements). The regulatory matrix that corresponds to activation is

W =

(
0 1

1 0

)
,

and this case was investigated in detail. The inhibition matrix is

W =

(
0 −1

−1 0

)
,

and behaviour of the system (2.2) for this case, is generally known. In

both cases the attractors are stable critical points (stable nodes), and the

number of critical points is at most three.

System of the form (2.2) appears in gene regulation theory [2]. It was

mentioned that a system of this structure can occur also in the theory of

telecommunication networks. Then the elements x1, x2, ... represent pairs

of communicating bodies, and elements of the regulatory matrices can vary

in absolute values and signs.

We wish to consider all cases. Therefore, we allow any elements in

W . It was detected that then the number of critical points can increase.

We provide a full classification of possible behaviors. Moreover, we give

examples of different matrices W , the respective sets of critical points, and

their characters. Where possible, typical phase portraits are supplied.
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2.1 System

Two-component gene regulatory networks are described by the differen-

tial system {
x′1 = f(w11x1 + w12x2 − θ1)− x1,

x′2 = f(w21x1 + w22x2 − θ2)− x2,
(2.2)

where f(x) is a sigmoidal function.

Definition 1. A function is called sigmoidal if the following is satisfied.

1. f(x) monotonically increases from 0 to 1, x ∈ R;

2. It has exactly one inflection point.

One example of sigmoidal function is the logistic function f(z) = 1
1+e−µz .

This function is used in mathematical models studied in works [7], [9], [22].

Another example of sigmoidal function is the Gompertz function. We

use it through the thesis. The graph of f and graphs of f ′ and f ′′ are

depicted in Fig. 2.1(b) for the values of parameters µ = 6.5 and θ = 0.3.

It is convex in some neighborhood of zero and then it is concave. It is

bounded by 1 and it is monotonically increasing.

-2 -1 1 2 x

0.2

0.4

0.6

0.8

1.0

f HxL

a) Sigmoidal function

0.2 0.4 0.6 0.8 1.0
x

-5

5

10

b) Solid - f(x), dashed - f ′(x), dotted -

f ′′(x)

Fig. 2.1

Consider the Gompertz function f(z) = e−e−µz

. This function is sigmoidal

in the sense of Definition 1.
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The system in extended form is




dx1

dt
= e−e−µ(w11x1+w12x2−θ1) − x1,

dx2

dt
= e−e−µ(w21x1+w22x2−θ2) − x2,

(2.3)

where µ and θ are positive parameters. Our goal is to study the phase

portrait and the attracting sets of this system.

2.2 System for critical points

It is supposed that f(z) is dependent also on a parameter µ that reg-

ulates steepness of the graph of f . We wish to state general properties of

the system (2.3).

Critical points of this system are solutions of
{

0 = e−e−µ(x2−θ) − x1,

0 = e−e−µ(x1−θ) − x2.
(2.4)

Lemma 1. Any critical point is of the form (x, x). Therefore, the

coordinate x of a critical point is defined from

x = f(x). (2.5)

The graphs of y = f(x) and y = f−1(x) are depicted in Fig. 2.2.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

a) θ = 0.3, µ = 0.3,

1 critical point

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

b) θ = 0.3, µ ≈ 4.15,

2 critical point

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

c) θ = 0.3, µ = 5,

3 critical point

Fig. 2.2
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For µ < e, where e = 2.7182818284..., we have the relation which is

depicted in Fig. 2.2.(a). For µ > e we have the relation which is depicted

in Fig. 2.2.(c).

It is evident that for some values of parameters there is exactly one

critical point and for some values of µ and θ there are three points. As an

intermediate state we have Fig. 2.2.(b) with exactly two critical points.

Our goal is to clarify which values of parameters correspond to 1, 2 or 3

critical points.

2.3 Linearized system

The linearized system in the vicinity of critical point (x1, x2) is
{

u′ = −u + µe−e−µ(x2−θ)−µ(x2−θ) · v,

v′ = µe−e−µ(x1−θ)−µ(x1−θ) · u− v.
(2.6)

Since x1 = x2 the system takes the form
{

u′ = −u + µe−e−µ(x−θ)−µ(x−θ) · v,

v′ = µe−e−µ(x−θ)−µ(x−θ) · u− v.
(2.7)

Therefore, by (2.4) and Lemma 1, the coordinate x of any critical point

(x, x) satisfies

x = e−e−µ(x−θ)

,

− ln(x) = e−µ(x−θ).

Let us consider a = µe−e−µ(x−Θ)−µ(x−Θ) = µx(− ln(x)), then
{

u′ = −u + a · v,

v′ = a · u− v.
(2.8)

We get the from x = e−e−µ(x−θ)

by logarithmation ln(− ln(x)) = −µ(x− θ).

For θ and x ∈ (0, 1) we get the formula (2.9)

θ = x +
1

µ
ln(− ln(x)). (2.9)

The relation (2.9) is visualized in Fig. 2.3
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0.0 0.5 1.0

x

2
4

6
8Μ

0.0

0.5

Fig. 2.3 The dependence of θ (for critical point (x, x)) of µ.

Fig. 2.4 shows that for some µ and θ there are respectively one, two or

three critical points.

For different µ, the dependence θ of x is visualized below.

0.2 0.4 0.6 0.8 1.0
x

-3

-2

-1

1

2

3
Q

a)The dependence of θ of x

for µ = 1

0.2 0.4 0.6 0.8 1.0
x

0.1

0.2

0.3

0.4

0.5

0.6

Q

b)The dependence of θ of x

for µ = e

0.2 0.4 0.6 0.8 1.0
x
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0.2
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0.5

0.6
Q

c)The dependence of θ of x

for µ = 7

Fig. 2.4

Look at the second and the third of pictures in Fig. 2.4. There is an

interval where θ(x) is increasing. Let us make an analysis of this.

One has that

θ′(x) = 1 +
1

µ

1

x ln x
(2.10)

and θ′(x) = 0 if
1

x ln x
= −µ. (2.11)

0.2 0.4 0.6 0.8 1.0
x

-14
-12
-10
-8
-6
-4
-2

1

x lnHxL

Fig. 2.5 The graph of 1
x ln x
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The function θ′(x) > 0 if 1
x ln x > −µ. Denote solutions of the equation

(2.11) x1(µ) and x2(µ) respectively. Horizontal dashed line in Fig. 2.5 is

for −µ and two vertical dashed lines are for x1(µ) and x2(µ).

Consider

θ1(µ) = x1(µ) +
1

µ
ln(− ln(x1(µ)))

and

θ2(µ) = x2(µ) +
1

µ
ln(− ln(x2(µ))).

2 4 6 8 10
Μ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q

Fig. 2.6 The graphs of θ1(µ) and θ2(µ) together.

The region Ω between θ1(µ) (lower branch) and θ2(µ) (upper branch)

corresponds to three critical points of the system, that is, for (µ, θ) ∈ Ω

there are exactly three critical points.

The characteristic equation for the linearized system (2.7) is

det(A− λI) =

∣∣∣∣∣
−1− λ a

a −1− λ

∣∣∣∣∣ =

∣∣∣∣∣
−1− λ µx(− ln(x))

µx(− ln(x)) −1− λ

∣∣∣∣∣ = (2.12)

= (−1− λ)2 − µ2x2(− ln(x))2 = 0

or λ = −1± a. Therefore λ1 = −1− a is always negative and λ2 = −1 + a.

There are three possibilities for critical points:

1. λ2 < 0 then (x, x) is stable node;

2. λ2 = 0 then (x, x) is stable degenerate point;

3. λ2 > 0 then (x, x) is saddle point.
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a) µ = 2
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x
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0.5
Λ

b) µ = e

-0.2 0.2 0.4 0.6 0.8 1.0
x

-3
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-1

1

Λ

c) µ = 5

Fig. 2.7 Roots of characteristic equation (2.12), solid line is λ2 = −1 + µx(− ln(x)), dashed

line is λ1 = −1− µx(− ln(x)), for a) µ ∈ (0, e), b) µ = e and c) µ ∈ (e,+∞)

The dependence of λ-s of x and x = e−e−µ(x−θ)

of θ (for µ given) is

depicted in Fig. 2.7.

We observed that attractors for system (2.2) are either stable nodes or

degenerate points with λ1 < 0, λ2 = 0.

Proposition 1. The system (2.2) cannot have critical points of type

focus.

It follows from (2.12), that λ = −1±µx(− ln(x)) and λ cannot be complex

number.

Theorem 1. There are four cases for system (2.2):

1. There is exactly one critical point of the type stable node.

2. There is a unique critical point with λ1 < 0, λ2 = 0. It is degenerate

stable critical point.

3. There are exactly two critical points, one of them is stable node, an-

other one is degenerate stable critical point.

4. There are exactly three critical points. Side critical points are stable

nodes, middle point is a saddle.
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Fig. 2.8 Visualization of Theorem 1

Example 1.
Let us consider µ = 3 and θ = 0.3. There are respectively one critical

point (0.8, 0.8). The phase portrait of system (2.3) for one critical point is

0.0 0.2 0.4 0.6 0.8 1.0
x0.0
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0.8

1.0

y

Fig. 2.9 Critical point is a stable node (λ1 < 0, λ2 < 0)

Example 2.
Let us consider µ = 4.15 and θ = 0.3. There are respectively two critical
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points (0.93, 0.93) and (0.11, 0.11). The phase portrait of system (2.3) for
two critical points is
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x0.0
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y

Fig. 2.10 First point is degenerate stable critical point, another one is stable node

Example 3.
Let us consider µ = 5 and θ = 0.3. There are respectively three critical

points (0.02, 0.02), (0.21, 0.21), (0.96, 0.96). The phase portrait of system
(2.3) for three critical points is
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y

Fig. 2.11 Side critical points are stable nodes, middle point is a saddle

2.3.1 Summing up the results

We have defined the region Ω in (µ, θ)-plane with the properties:

• if (µ, θ) ∈ Ω, then there are exactly three critical points with the
properties - two side critical points are stable nodes, middle (central)
point is a saddle;

22



• if (µ, θ) ∈ ∂Ω, then there are exactly two critical points with the prop-
erties - the first critical point is stable node, the second is degenerate
point (λ1 < 0, λ2 = 0);

• if (µ, θ) ∈ Q \ Ω, then there is exactly one critical point with the
property - it is a stable node;

• the common point of lower and upper branches of ∂Ω corresponds to
a unique critical point with λ1 < 0, λ2 = 0, depicted in Fig. 2.15 [2].

2.4 Interrelation

The type of interaction is described by the so-called regulatory ma-
trix W = (wij). The regulatory matrix elements can take any reasonable
values. Generally, the system that models interactions and evolution of
gene regulatory networks (GRN in short) is (2.3) where f(z) is a sigmoidal
function, probably depending on parameters θi, and wij are elements of
the regulatory matrix

W =

(
w11 w12

w21 w22

)
.

There exist four cases for type of interaction.

Case A: Activation. The regulatory matrix in this case takes the form

W =

( ∗ +
+ ∗

)
,

where elements w12 and w21 are positive, but elements w11 and w22 can
take any reasonable values.
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Fig. 2.12 Visualization of all cases
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Case B: Inhibition. The regulatory matrix in this case takes the form

W =

( ∗ −
− ∗

)
,

where elements w12 and w21 are negative, but elements w11 and w22 can
take any reasonable values.
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Fig. 2.13 Visualization of all cases

Case C: Activation - Inhibition. The regulatory matrix in this case takes
the form

W =

( ∗ +
− ∗

)
,

where element w12 is positive and element w21 is negative, but elements
w11 and w22 can take any reasonable values.
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Fig. 2.14 Visualization of all cases

Case D: Inhibition - Activation. The regulatory matrix in this case takes
the form

W =

( ∗ −
+ ∗

)
,

where element w12 is negative and element w21 is positive, but elements
w11 and w22 can take any reasonable values.
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Fig. 2.15 Visualization of all cases

If µ is large enough in the GRN differential system isoclines have the
Z-shaped form. The parameter µ is responsible for the sharpness of the
angle of Z. The parameter θ is responsible for the shift of the graph of sig-
moidal function, but the elements of regulatory matrix wij are responsible
for the shaped form.

Proposition 2. For the function

x1 = f(w11x1 + w12x2 − θ1) (2.13)

the following is true:

x2 → +∞, x1 = f(w11x1 + w12x2 − θ1) → 1;

x2 → −∞, x1 = f(w11x1 + w12x2 − θ1) → 0.

Proposition 3. For the function

x2 = f(w21x1 + w22x2 − θ2) (2.14)

the following is true:

x1 → +∞, x2 = f(w21x1 + w22x2 − θ2) → 1;

x1 → −∞, x2 = f(w21x1 + w22x2 − θ2) → 0.

Corollary. For the system (2.2) exists at least one critical point.

Proposition 4. For the system (2.2) all critical points (x, y) are in the
domain (0, 1)× (0, 1).

Proposition 5. One characteristic number is zero for the system (2.2)
in tangent points of isoclines.
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2.4.1 Case A: Activation

We consider the case of the maximal number of critical points (equilib-
rium states), for example, in the case of a regulatory matrix of the form

W=

(
+ +
+ +

)
.

For the sigmoidal function f = e−e−µz

and the particular choice of the

regulatory matrix W=

(
10 5
2 3

)
the system is





dx1

dt
= e−e−µ(10x1+5x2−θ1) − x1,

dx2

dt
= e−e−µ(2x1+3x2−θ2) − x2.

(2.15)

It is supposed that f(z) is dependent also on a parameter µ that reg-
ulates steepness of the graph of f . We wish to state general properties of
the system (2.15).

Critical points of this system are solutions of





x1 = e−e−µ(10x1+5x2−θ1)

,

x2 = e−e−µ(2x1+3x2−θ2)

.

(2.16)

Two isoclines of system (2.15) are depicted in Fig. 2.16

1 2 3
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Fig. 2.16 The graph of system (2.15) for nine critical points: µ = 20, θ1 = 6, θ2 = 2.5,

w11 = 10, w12 = 5, w21 = 2, w22 = 3
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• The type of the first critical point (0, 0) is a stable node
(λ1 = −1, λ2 = −1).

• The type of the second critical point (0.6, 0) is a saddle point
(λ1 = −1, λ2 = 59.96).

• The type of the third critical point (1, 0) is a stable node
(λ1 = −1, λ2 = −1).

• The type of tne fourth critical point (1, 0.16) is a saddle point
(λ1 = −1, λ2 = 16.41).

• The type of the fifth critical point (0.26, 0.67) is a unstable node
(λ1 = 75.3, λ2 = 8.8).

• The type of the sixth critical point (0, 0.87) is a saddle point
(λ1 = −1, λ2 = 6.5).

• The type of the seventh critical point (0, 0.99) is a stable node
(λ1 = −1, λ2 = −0.99).

• The type of the eighth critical point (0.1, 0.99) is a saddle point
(λ1 = −0.99, λ2 = 43.9).

• The type of the ninth critical point (1, 1) is a stable node
(λ1 = −1, λ2 = −0.9).

To confirm the results of analysis, let us provide the phase portrait for
the system (2.15).

0.0 0.5 1.0

0.0

0.5

1.0

Fig. 2.17 The phase portrait of system (2.15) for nine critical points: µ = 20, θ1 = 6,

θ2 = 2.5, w11 = 10, w12 = 5, w21 = 2, w22 = 3
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Cases B, C, and D can be investigated analogously.

2.4.2 Summing up the results

In a simple two-dimensional system of differential equations modeling
the two-element network, nine critical points are possible. The set of crit-
ical points for this case consists of four stable nodes, four-saddle points,
and one unstable node. The attractor for this system for selected values of
parameters consists of four critical points (1, 3, 7, 9).

3 Mathematical modeling of gene and neuronal net-

works by ordinary differential equations

In this thesis, we study Neural Networks, called also Artificial Neural
Networks (ANN), and their mathematical models, using ordinary differen-
tial equations. The motivation for the study of ANN went from the at-
tempts to understand the principles and organization of the human brain.
Understanding came that human brains work differently from digital com-
puters. Its effectiveness comes from high complexity, nonlinear mode of
regulation, and parallelism of actions. The elements of the human brain
were called neurons. These elements perform calculations still faster than
the fastest digital computers. The human brain is able to perceive infor-
mation about the environment in the form of images, and, moreover, it can
process the received information needed for interaction with the environ-
ment.

At birth, the human brain has a ready structure for learning, which
in familiar terms is understood as experience. So the neural network is
designed to model the way in which the human brain solves usual problems
and performs a particular task. A particular interest in ANN stems from
the fact that an important group of neural networks performs needed to
solve a problem computations through the process of learning. So, following
[18], generally, ANN can be imagined as a parallel distributed processor,
consisting of simple processing units, which is able to gain experiential
knowledge and make it available for use.

Artificial Neural Networks (ANNs) consist of a number of elements that
are connected. “Each neuron has a sigmoid transfer function and a con-
tinuous positive and bounded output activity that evolves according to
weighted sums of the activities in the networks. Neural networks with ar-
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bitrary connections are often called recurrent networks” [12]. No conditions
are imposed to restrict synaptic values. There are two types of recurrent
neural networks: discrete-time recurrent neural networks and continuous-
time ones. The dynamics of the continuous-time recurrent neural network
with n units can be described by the system of ordinary differential equa-
tions (ODE) [16])

x′i = −bixi + fi(Σaijxj) + Ii(t), (3.1)

where xi is the internal state of the i-th unit, bi is the time constant for
the i-th unit, aij are connection weights, Ii(t) is the input to the i-th unit,
and fi(Σaijxj) is the response function of the i-th unit. Usually, f is taken
as a sigmoidal function. There are particular response functions that are
non-negative. For instance, functions fi(z) = (1 + exp(µi(z − θi))

−1 which
are used in [14]. More general cases can be modeled by the system using
the function fi(z) = tanh(aiz− θi), which takes values in the open interval
(−1, 1). If the recurrent neural networks without input are considered, the
system

x′i = fi(Σ(aijxj − θi))− bixi (3.2)

can be considered.
The mathematical model using ordinary differential equations, is




dx1

dt
= 2

1

1 + e(a11x1+a12x2+a13xn−θ1)
− 1− b1x1,

dx2

dt
= 2

1

1 + e(a21x1+a22x2+aw23xn−θ2)
− 1− b2x2,

dx3

dt
= 2

1

1 + e(a31x1+a32x2+a33x3−θ3)
− 1− b3x3.

(3.3)

The same system can be written as ([60])




x′1 = tanh(a11x1 + a12x2 + a13x3 − θ1)− b1x1,
x′2 = tanh(a21x1 + a22x2 + a23x3 − θ2)− b2x2,

x′3 = tanh(a31x1 + a32x2 + a33x3 − θ3)− b3x3.

(3.4)

The elements of this 3D network are called neurons. The connections be-
tween them are synapses (or nerves). There is an algorithm that describes
how the impulses are propagated through the network. In the above model,
this algorithm is encoded by the matrix

W =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 . (3.5)
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Each neuron accepts signals from others and produces a single output.
The extent to which the input of neuron i is driven by the output of neuron
j is characterized by its output and synaptic weight aij. The dynamic
evolution leads to attractors of the system (3.4) and it was experimentally
observed in neural systems. In theoretical modeling, the emphasis is put
on the attractors of a system. We wish to study them for the system (3.4).

Similar systems arise in the theory of genetic regulatory networks. The
difference is that the nonlinearity is represented by a positive valued sig-
moidal function. One of such systems is





dx1

dt
=

1

1 + e−µ1(a11x1+a12x2+a13xn−θ1)
− b1x1,

dx2

dt
=

1

1 + e−µ2(a21x1+a22x2+a23xn−θ2)
− b2x2,

dx3

dt
=

1

1 + e−µ3(a31x1+a32x2+a33x3−θ3)
− b3x3.

(3.6)

Systems of the form (3.6) were studied before by many authors. The
interested reader may consult the works ( [58], [64], [17], [8], [2], [63]).
Similar systems appear in the theory of telecommunication networks.

In this section, we study the different dynamic regimes for the system
(3.4) which can be observed under various conditions. In particular, we first
speak about critical points for the system (3.4) and evaluate the number of
them. Then we focus on periodic regimes and study their attractiveness for
other trajectories. This can be done, under some restrictions, for systems
of relatively high dimensionality. Also, the evidences of chaotic behavior
are presented.

3.1 Preliminary results

3.1.1 Invariant set

Consider 3D system (3.4).

Proposition 6. System (3.4) has an invariant set

Q3 =

{−1

b1
< x1 <

1

b1
,
−1

b2
< x2 <

1

b2
,
−1

b3
< x3 <

1

b3

}
. (3.7)
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3.1.2 Nullclines

The nullclines for the system are defined by the relations




x1 = [tanh(a11x1 + a12x2 + a13x3 − θ1)]/b1,

x2 = [tanh(a21x1 + a22x2 + a23x3 − θ2)]/b2,

x3 = [tanh(a31x1 + a32x2 + a33x3 − θ3)]/b3.

(3.8)

3.2 Critical points

The critical points for the system (3.4) are the cross points of the null-
clines. They can be found from the system





x1 − [tanh(a11x1 + a12x2 + a13x3 − θ1)]/b1 = 0,
x2 − [tanh(a21x1 + a22x2 + a23x3 − θ2)]/b2 = 0,
x3 − [tanh(a31x1 + a32x2 + a33x3 − θ3)]/b3 = 0.

(3.9)

Proposition 7. For the system (2.2) all critical points are in the in-
variant set Q3.

The nullclines for the system (2.2) are located in the set Q3 only.

Proposition 8. At least one critical point exists for the system (2.2).

Remark. The number of critical points may be greater, up to 27, but
finite.

Remark. Both assertions are valid for the n-dimensional case also.

Example 4.
Consider the system (3.4) with the matrix

W =




1 2 0
−2 1 0
0 0 1


 (3.10)

and b1 = b2 = b3 = 1, θ1 = 0.8, θ2 = 0.3, θ3 = 0.2. There is one critical
point (−0.162; 0.399; −0.731).
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Fig. 3.1 Nullclines for system (3.4) ( x1 - red, x2 - green, x3 - blue)

Example 5.
Consider example of multiple critical points and the system (3.4) with

the matrix

W =




1.5 2 0
−2 1.5 0
0 0 1.5


 (3.11)

and b1 = b2 = b3 = 1, θ1 = 0.7, θ2 = 0.3, θ3 = 0.01.

-1.0

-0.5

0.0

0.5

1.0

X1

-1.0

-0.5

0.0

0.5

1.0

X2 -1.0
-0.5

0.0
0.5

1.0

X3

Fig. 3.2 Nullclines for system (3.4) ( x1 - red, x2 - green, x3 - blue)

There are three critical points (−0.067; 0.367; 0.854), (−0.067; 0.367; 0.020)
and (−0.067; 0.367; −0.863).
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3.2.1 Linearization at a critical point

For the system (2.2) the linearized system for any critical point (x∗1, x
∗
2, x

∗
3)

is 



u′1 = −b1u1 + a11g1u1 + a12g1u2 + a13g1u3,
u′2 = −b2u2 + a21g2u1 + a22g2u2 + a23g2u3,

u′3 = −b3u3 + a31g3u1 + a32g3u2 + a33g3u3,

(3.12)

where

g1 =
4e−2(a11x

∗
1+a12x

∗
2+a13x

∗
3−θ1)

[1 + e−2(a11x∗1+a12x∗2+a13x∗3−θ1)]2
, (3.13)

g2 =
4e−2(a21x

∗
1+a22x

∗
2+a23x

∗
3−θ2)

[1 + e−2(a21x∗1+a22x∗2+a23x∗3−θ2)]2
, (3.14)

g3 =
4e−2(a31x

∗
1+a32x

∗
2+a33x

∗
3−θ3)

[1 + e−2(a31x∗1+a32x∗2+a33x∗3−θ3)]2
, (3.15)

and coeficent matrix of sistem (3.12) is denoted by A. The characteristic
equation for b1 = b2 = b3 = 1 is

det|A− λI| = −Λ3 + (a11g1 + a22g2 + a33g3)Λ
2 + [g1g2(a12a21 − a11a22)+

+g1g3(a13a31 − a11a33) + g2g3(a23a32 − a22a33)]Λ + g1g2g3(a11a22a33+
+a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31) = 0,

(3.16)
where Λ = λ + 1.

3.3 Inhibition-activation

Consider the system





x′1 = tanh(a12x2 + a13x3 − θ1)− x1,
x′2 = tanh(a21x1 + a23x3 − θ2)− x2,

x′3 = tanh(a31x1 + a32x2 − θ3)− x3.

(3.17)

where a12, a13, a23 are negative, a21, a31, a32 are positive.
We consider the specific case, when

W =




0 −1 −1
1 0 −1
1 1 0


 (3.18)
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and θ1 = θ2 = θ3 = θ. The system then has a single critical point. Let us
suppose, that

g1 =
4e−2(−x2−x3−θ)

[1 + e−2(−x2−x3−θ)]2
, (3.19)

g2 =
4e−2(x1−x3−θ)

[1 + e−2(x1−x3−θ)]2
, (3.20)

g3 =
4e−2(x1+x2−θ)

[1 + e−2(x1+x2−θ)]2
. (3.21)

Values of gi are in the range (0, 1). The linearized system now is





u′1 = −u1 − g1u2 − g1u3,

u′2 = −u2 + g2u1 − g2u3,

u′3 = −u3 + g3u1 + g3u2,

(3.22)

The characteristic equation can be obtained from

A− λI =

∣∣∣∣∣∣

−1− λ −g1 −g1

g2 −1− λ −g2

g3 g3 −1− λ

∣∣∣∣∣∣
(3.23)

and

det|A− λI| = −λ3 − 3λ2 + (g1g2 + g1g3 + g2g3 − 3)λ
+(g1g2 + g1g3 + g2g3 − 1) = 0.

(3.24)

The characteristic numbers are




λ1 = −1,
λ2 = −1−√g1g2 + g1g3 + g2g3 i,

λ3 = −1 +
√

g1g2 + g1g3 + g2g3 i,

(3.25)

where i is an imaginary unit (i2 = −1).

Proposition 9. A critical point of the system (3.17) under the above
conditions is 3D-focus, that is, the following is true: there is 2D-subspace
with a stable focus and attraction in the remaining dimension.
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4 Systems with stable periodic solutions. Andronov

- Hopf type bifurcations.

4.1 2D case

We first study the second order system
{

x′1 = tanh(kx1 + bx2 − θ1)− b1x1,

x′2 = tanh(ax1 + kx2 − θ2)− v2x2,
(4.1)

where b = −a = 2, and k > 0 is a parameter.
Choose k small enough to make a unique critical point a stable focus.

Then increase k until the stable focus turns to unstable one. Then the
limit cycle emerges, surrounding the critical point. This is called Andronov
- Hopf bifurcation for 2D systems.

Example 6.
Consider the system (4.1) with the matrix

W =

(
k 2
−2 k

)
(4.2)

and k = 0.7, b1 = b2 = 1, θ1 = 0.2, θ2 = 0.4.
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Fig. 4.1 Nullclines and vector field for system (4.1) ( x1 - blue, x2 - red).

There is one critical point that is stable focus. If the parameter k

increases the stable focus turns to an unstable one. Then the limit cycle
emerges, surrounding the critical point.
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Example 7.
Consider the system (4.1) with the matrix

W =

(
k 2
−2 k

)
(4.3)

and k = 1.2, b1 = b2 = 1, θ1 = 0.2, θ2 = 0.4.
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Fig. 4.2 The limit cycle in system (4.1) ( x1 - blue, x2 - red).

4.2 3D case

Consider now the 3D system with the matrix

W =




k 0 b

0 a22 0
a 0 k


 (4.4)

where a, b, k are as in 2D system (4.1). The second nullcline is defined by
the relation

x2 =
1

b2
tanh(a22x2 − θ2). (4.5)

Choose the parameters so that the equation (4.5) has three roots. Then
the second nullcline is a union of three parallel planes.

Example 8.
Consider picture of nullclines. There are three periodic solutions in

system (4.5) with the matrix

W =




1.5 0 2
0 2.7 0
−2 0 1.5


 (4.6)

and b1 = b2 = b3 = 1, θ1 = 0.2, θ2 = 0, θ3 = 0.3.

36



-1.0

-0.5

0.0

0.5
1.0

X1

-1.0

-0.5

0.0

0.5
1.0

X2

-1.0

-0.5

0.0

0.5

1.0

X3

Fig. 4.3 The nullclines of the system (4.5) with the regulatory matrix (4.6).

-1.0

-0.5

0.0

0.5

1.0

X1

-1.0

-0.5

0.0

0.5

1.0

X2

-1.0

-0.5

0.0
0.5

1.0

X3

Fig. 4.4 Three periodic solutions of the system (4.5) with the regulatory matrix (4.6).

4.3 Control and management of ANN

First citation from [61]: “Models of ANN are specified by three basic en-
tities: models of the neurons themselves–that is, the node characteristics;
models of synaptic interconnections and structures–that is, net topology
and weights; and training or learning rules – that is, the method of ad-
justing the weights or the way the network interprets the information it
receives.”

In this section, we discuss the problem of changing the behavior of
trajectories of a system (3.4). This may be interpreted as partial control
over the system. The system has as parameters the coefficients aij, the
values θi, and bi in the linear part. Properties of the system may be changed
by varying any of the mentioned parameters.

We would like to demonstrate, how a system of the form (3.4) can
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be modified so, that trajectories start to tend to some of the indicated
attractors. To obtain it, let us consider the system (3.4), which has as
attractors three limit cycles. This can be done by three operations: 1)
put the entries of the 2D regulatory matrix, which corresponds to the
2D system with the limit cycle L, to the four corners of a 3D matrix A;
2) choose the middle element of the 3D matrix A so, that the equation
x2 = tanh(a22x2 − θ2) with respect to x2 has exactly three roots r1 <

r2 < r3; 3) set the four remaining values of aij to zero. Set also bi to unity.
After finishing these preparations, the second nullcline will be three parallel
planes Pi, going through x2 = ri, i = 1, 2, 3. Each of these planes will consist
of the limit cycle. Two-side limit cycles will attract trajectories from their
neighborhoods. The middle limit cycle will attract only trajectories, lying
in the plane P2.

Now, let us solve the problem of control. Let the limit cycle at P3 be
conditionally “bad”. The problem is to change the system so, that all
trajectories in Q3 be attracted to the limit cycle which at the beginning
of the process was in the plane P1. Problems of this kind may arise often.
In the paper [63], similar problem was treated mathematically for genetic
networks.

Solution. Change θ2 so that the equation x2 = tanh(a22x2 − θ2) have
now the unique root near the second nullcline the plane, passing near r1.
This operation is possible, since the graph of tanh(a22x2− θ2) is sigmoidal,
and changing θ2 means shifting the original plane P1 in both directions.
After that, only one attractor (limit cycle) remains. The problem is solved.

4.4 Summing up the results

The behavior of solutions of systems of the form (3.3) strongly depends
on the structure of weight matrix W. Any system (3.3) has at least one

critical point in the region D =
(
−1
b1

, 1
b1

)
×

(
−1
b2

, 1
b2

)
×

(
−1
b3

, 1
b3

)
. No trajectory

of the system (3.3) can escape this region. Multiple critical points are
possible. Stable nodes, stable and unstable 3D-focuses and saddle points
can occur.

5 Conclusions

The work is devoted to the study of systems of ordinary differential
equations arising in mathematical models of GRN and ANN.
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The main results of the Doctoral thesis are:

• analysis of the phase plane for two-dimensional GRN system with
Gompertz nonlinearities, counting critical points and their character-
istics;

• formulas for linearization and analysis of critical points in GRN and
ANN systems;

• examples of periodic attractors in GRN and ANN systems;

• basic properties of ANN systems with hyperbolic tangent nonlineari-
ties;

• comparison of GRN and ANN systems;

• local analysis of critical points of GRN and ANN systems for dimen-
sions two and three;

• graphical images of nullclines for many relevant to the study cases;

• sensitive dependence of solutions to GRN and ANN systems by cal-
culating Lyapunov exponents;

• control of two-dimensional inhibitory GRN systems;

• control by changing parameters over systems with hyperbolic tangent
nonlinearities.
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