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Abstract
In agriculture, yield prediction is a critical issue as all farmers would like to know how 
much harvest they may expect. In past decades, yield predictions were made by consid-
ering the farmer’s previous profitability with that specific crop and field. The implemen-
tation of machine learning techniques can help with the prediction of yield, which is a 
significant challenge that remains to be solved using the information currently available. 
In agriculture, many machine-learning approaches are employed and assessed to forecast 
crop yield. An agricultural yield prediction system is proposed and developed in this work 
using historical data. This is achieved by using deep learning algorithms for agriculture 
data, such as Independent Component Analysis (ICA) with Crow Search Optimization 
Algorithm (CSOA) and Deep Convolutional Neural Network (DCNN), and suggesting 
fertilizer optimal for each crop. The suggested study uses a DCNN classification method 
over the ICA-CSO approach to estimate agricultural production. The suggested approach 
outperforms existing models and predicts agricultural output with 97 percent accuracy 
while maintaining the baseline data distribution, giving an accurate perspective of fore-
casting crop yields using deep learning algorithms.

Keywords: Independent Component Analysis, Crow Search Optimization Algorithm.

*Corresponding author: Priti Prakash Jorvekar. Smt. Kashibai Navale College of 
Engineering, SPPU University, Pune, India. E-mail: pritiprmjorvekar@gmail.com

Sharmila Kishor Wagh. MES College of Engineering, Pune, SPPU University Pune, India

Jayashree Rajesh Prasad. School of Computing, MIT Art Design and Technology University 
Pune, India

INTRODUCTION

Crop harvest forecasting is becoming more 
important as people grow more worried about 
food security. Early agricultural output forecast-
ing reduces the likelihood of scarcity by calcu-
lating the availability of food for the growing 
number of people worldwide (Kogan et al. 

2019, Kumar et al. 2020, Rashid et al. 2021). 
To address one of the world’s most essential 
concerns, raising agricultural production is one 
potential solution (Sajja et al. 2021). According 
to the World Health Organisation, there remains 
insufficient food sustenance on hand to feed 820 
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million people worldwide. The United Nations’ 
Sustainable Development Goals aim to abolish 
starvation, assure food safety, and promote sus-
tainable agriculture by 2030 (Searchinger et al. 
2019). The Food and Agriculture Organisation 
(FAO) estimates that by 2050, food consump-
tion will increase by 60% to feed the world’s 
9.3 billion people. As a result, crop production 
forecasts can give vital information for emerg-
ing a realistic strategy to accomplish the goal 
of ending hunger (Li et al. 2022). Crop harvest 
is unfair by many factors, making it difficult 
to create a valid forecast model using typical 
methods. However, developments in comput-
er technology have enabled the invention and 
training of a novel approach for predicting ag-
ricultural yield (Nishant et al. 2020, Zsögön et 
al. 2022).
There have been many projects in recent de-
cades to reduce hunger worldwide and feed the 
world’s rapidly expanding population. Nearly 
800 million people still lack enough food to 
consume despite the crops’ output yields having 
increased significantly during the last 50 years 
(Koutika et al. 2022). As a result, the reduc-
tion of hunger and an increase in food security 
have been given top priority in the UN’s 2030 
Agenda for Sustainable Development. The 
ability to forecast the crop’s potential yield 
is seen by many participants in the produc-
tion and trading stage of agriculture as an im-
portant breakthrough (Batool et al. 2022). It 
is critical to provide farmers with production 
projections to assist them in managing their 
budgets as well as resource consumption. As 
a result, farmers are better equipped to make 
financial and managerial decisions, and early 
problem detection that affects production can 
help to start corrective actions for the entire 
crop (Abbas et al. 2020, Elavarasan & Vincent 
2020, Zenda et al. 2021). Crop production pre-
diction may prove to be a useful tool for helping 
with activity planning and execution. Because 
of this, predicting agricultural productivity is a 
difficult task that requires attention. Crop yield 
levels are influenced by many elements, such as 

soil and weather conditions, fertiliser use, and 
seed variety, which also affect plant phenotypes 
(Mohammed et al. 2023).
A variety of crop simulation and yield estimat-
ing methods have been deployed to estimate 
crop yields. Based on the aforementioned 
criteria, artificial intelligence (AI) may be uti-
lised to provide more accurate predictions of 
agricultural output. Machine Learning (ML), a 
subset of AI, has recently become widely used 
for agricultural output prediction due to its 
capacity to unearth non-linear patterns and laws 
in enormous databases obtained from numerous 
sources (Bharadiya et al. 2023). The spectrum 
of ML techniques ranges from straightforward 
regression models to more complex Deep 
Learning (DL) algorithms (Khaki et al. 2020). 
Deep Learning is a type of machine learning 
that modifies raw data by applying multiple 
layers of analysis and reveals the dataset’s im-
portant but hidden characteristics. A DL mod-
el’s ability to forecast agricultural productivity 
can be enhanced by adding more hidden layers 
(Lu et al. 2022).
To maximize yield potential, stakeholders can 
make decisions in real-time using data from 
remote sensing to continuously monitor crops 
throughout their growing state. The yield of 
many crops cannot be estimated concurrently, 
preventing the development of a method that 
would enable more precise projections. Khaki 
et al. (2021) and Oikonomidis et al. (2022) pro-
posed a new model Yield Net takes into account 
the multi-target response variable by using a 
fresh deep learning architecture and new loss 
function. The suggested strategy is competitive 
with other cutting-edge methods, according to 
numerical data, and reliably estimates produc-
tion from one to four months before harvest.
Lu et al. (2022) and Khaki et al. (2021) em-
ployed images of bean pods and leaves to 
anticipate soybean production in the field us-
ing deep learning and a generalised regression 
neural network (GRNN). You Only Look Once 
(YOLOv3), feature pyramid networks (FPN), 
single shot multi box detectors (SSD), and 
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faster region-convolutional neural networks 
(Faster R-CNN) were utilised to recognise bean 
pods. To improve the detection performance of 
YOLOv3, modifications were made to the par-
tial neural network structure, the anchor frame 
clustering method, the IoU loss function and 
obtained 97.43% accuracy.
Oikonomidis et al. (2022) and Sun et al. 
(2019) assessed the performance of deep 
learning-based models using a publicly avail-
able soybean dataset. The hybrid CNN-DNN 
model outperformed previous models, with 
an RMSE of 0.266, an MSE of 0.071, and an 
MAE of 0.199. The model’s predictions have 
an R2 of 0.87. When compared to the other 
DL-based approaches, the execution time of 
the second-placed XGBoost model was shorter.
Khaki et al. (2021) and Ghazaryan et al. (2020) 
proposed YieldNet, a novel convolutional neu-
ral network model that shares the weights 
of the backbone feature extractor and uses a 
ground-breaking deep learning framework to 
anticipate maize and soybean yields. A novel 
loss function was also proposed by the author to 
account for the multi-target response variable. 
Data from 1132 counties in the United States 
for maize and 1076 counties in the United 
States for soybeans were used in our experi-
ment. Our proposed method is competitive with 
other cutting-edge methodologies, according 
to numerical results, and anticipates maize and 
soybean output with an MAE of 8.74% and 
8.70% of the average yield, respectively, from 
one to four months before harvest.
Sun et al. (2019) and Kross et al. (2020) sug-
gested a deep CNN-LSTM model for end-of-
season and in-season soybean yield predic-
tion at the county level in the CONUS. Crop 
growth characteristics and environmental vari-
ables such as weather, MODIS Land Surface 
Temperature (LST) data, and MODIS Surface 
Reflectance (SR) data were used to train the 
model. The experiment findings show that the 
suggested CNN-LSTM model outperforms the 
pure CNN or LSTM model in both end-of-sea-
son and in-season scenarios. In the future, the 

suggested technique has significant promise for 
enhancing the accuracy of yield prediction for 
other crops such as maize, wheat, and potatoes 
at fine scales.
Ghazaryan et al. (2020) and Kendall and Gal 
(2017) evaluated various algorithms and mul-
tiple remotely sensed time-series datasets for 
yield estimation at the county and field size 
in the United States. MODIS-based surface 
reflectance, Land Surface Temperature, and 
Evapotranspiration time data were employed 
for county-level analysis. NASA’s Harmonised 
Landsat Sentinel-2 (HLS) product was used for 
field-level analysis. With a mean percentage er-
ror of 10.3% for maize and 9.6% for soybeans, 
the CNN-LSTM model achieved the best accu-
racy. When data from the middle of the grow-
ing season was utilised, all models produced 
accurate findings with R2 values more than 0.8. 
The findings demonstrate the utility of satellite 
data for yield estimates at various management 
scales.
Kross et al. (2020) and Gal and Ghahramani 
(2016) utilized an artificial neural network 
(ANN) approach to evaluate the significance 
of predictor variables in forecasting end-of-
season yields for corn and soybeans within 
specific fields. Crop yield predictor factors in-
cluded satellite-derived vegetation indices and 
elevation-derived variables, with the SR index 
and slope being the most influential. Corn had 
fewer relative mean absolute errors than soy-
bean, with errors of less than 10% for corn 
and more variable for soybean. The findings 
are encouraging and can be utilised to improve 
larger-scale yield forecasts.

MATERIAL AND METHODS

Study background

In agriculture, farmers want to grow crops that 
produce the most. Selecting the optimum crop 
among the many varieties available is essential 
for increasing the profitability of agriculture. 
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So, choosing the right crop is the largest issue 
for farmers. They typically expand the product 
offerings from last year at an attractive price 
(Suganya 2020). But a variety of things affect 
crop productivity. It is possibly better to select 
the best hybrid seeds or crops for a crop mix 
that is better suited to the needs of the farm 
with the help of data mining technology in ag-
riculture.  The likelihood of crops achieving 
their full yield potential in each environment 
can be estimated using a range of advanced 
algorithms. However, there are drawbacks to 
each proposed algorithm. Thus, the problems 
with crop selection are resolved using a sophis-
ticated computerised crop forecasting method 
as shown in figure 1. Therefore, choosing a crop 
requires an efficient decision-making process.
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Figure 1. Flow chart of proposed prediction 
model.

Pre-processing

Before using the data collected image for fur-
ther processing, pre-processing is performed to 
clean up any noise or irregularities. The Median 
filter is used for noise reduction, a standard 
pre-processing technique. To get better results 
later, the median filter, a non-linear filter, is 
employed to lower noise and enhance image 
quality. In some circumstances, this method mi-
nimises noise by conserving the image’s edges. 
The techniques used to improve an image must 
minimise the image’s noise while preserving 
the image’s intrinsic information. To evaluate if 
a pixel is a part of the background, the median 
filter looks at the nearest pixels in the image. 
The median filter calculates the median values 
and substitutes the values rather than merely 
obtaining the mean value. The median value 
is calculated, the 3x3 dimension (9 elements) 
is used, and the values are swapped in our pro-
posed method so that the feature quality is not 
diminished. By mathematically organising the 
surrounding numbers and substituting the cen-
ter value for the other values, the median value 
may be calculated. Because the median value 
is one of the values in the set of data and does 
not create any false new data, the median filter 
is better than the mean filter.
A widely used approach for pre-processing 
data in agricultural production prediction is 
the Min-Max algorithm. It involves scaling the 
input features of the dataset to a specific range, 
typically between 0 and 1. 
This determines the minimum and maximum 
values for each feature in the dataset. These val-
ues are computed based on the entire dataset 
or specific subsets, depending on the require-
ments. For each feature, calculate the scaled 
value using the Min-Max formula: 

Scaled value = (original value - minimum 
value) / (maximum value - minimum value)

                                       		  (1)
To scale all features in the dataset to the range 
[0, 1] using Min-Max scaling. The Min-Max 
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algorithm offers several advantages for pre-pro-
cessing data in crop yield prediction, by scaling 
the features to a specific range, the Min-Max 
algorithm ensures that the features have a con-
sistent scale and are comparable. This prevents 
any single feature from dominating the analy-
sis due to differences in magnitudes. The Min-
Max algorithm preserves the relative relation-
ships and patterns among the features. It does 
not alter the distribution or shape of the data, 
maintaining the information contained in the 
original dataset. Scaling the features using Min-
Max can improve the performance and conver-
gence of machine learning models used for crop 
yield prediction. It can help prevent issues like 
gradient explosion or vanishing gradients that 
can arise from unnormalized data. The scaled 
values obtained using the Min-Max algorithm 
are easily interpretable, as they lie within the 
range of 0 to 1. This allows for a straightfor-
ward understanding of the relative magnitudes 
and comparisons between different features.

Feature extraction

The method used Crow Search Optimization 
(CSO) combined with Independent Component 
Analysis (ICA) following pre-processing to se-
lect specific attributes effectively. A group of 
mixed signals can be dissected into their un-
derlying independent components using the 
statistical signal processing technique known 
as ICA. The intention is to estimate the original 
sources or signals, and it is assumed that the 
observed signals are a linear mixture of these 
separate components. ICA is commonly used 
in various fields, including image processing, 
speech recognition, and bioinformatics. In the 
context of data analysis, ICA can be employed 
as a feature extraction method to identify mean-
ingful and independent features from a dataset. 
The ICA considers n-dimensional set of data 
vectors represented as, where the vectors (direc-
tions) along which statistics of data projections 
are independent of one another. Formally, if A 
transforms the provided reference frame to the 

reference frame of the independent component, 
then
		  x = As   (2)
such that 
		  p(s) = Πp_a (s_i)  (3)

Where the marginal distribution is represent-
ed as  (·) and is the joint distribution over 
the n-dimensional vector  as . Many different 
algorithms are suggested for carrying out in-
dependent component analysis, such as max-
imisation of conditional entropy in the output 
(the information content in the output that, 
generally, increases if the output components 
become independent), minimization of the di-
vergence measure between the joint density and 
the product of marginal using natural gradient 
and relative gradient, using nonlinear principal 
component analysis.
The method for doing independent component 
analysis (ICA) is typically described as the 
method for determining one specific W, 

		  y = Wx  (4)

Such that each yi becomes independent of the 
others. If one such W can be found, the resultant 
marginal densities become a scaled permutation 
of the original density functions if the individu-
al marginal distributions are non-Gaussian. The 
natural gradient descent of the Kullback-Leibler 
divergence between the joint density and the 
sum of the marginal densities is one generic 
learning method for determining one W. 

The method for doing independent component analysis (ICA) is typically described as the method 
for determining one specific W,  

 
𝑦𝑦𝑦𝑦 =  𝑊𝑊𝑊𝑊𝑚𝑚𝑚𝑚    (4) 

 
Such that each yi becomes independent of the others. If one such W can be found, the resultant 
marginal densities become a scaled permutation of the original density functions if the individual 
marginal distributions are non-Gaussian. The natural gradient descent of the Kullback-Leibler 
divergence between the joint density and the sum of the marginal densities is one generic learning 
method for determining one W.  

 
∆𝑊𝑊𝑊𝑊 =  𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼 − 𝜑𝜑𝜑𝜑(𝑦𝑦𝑦𝑦)𝑦𝑦𝑦𝑦 𝑇𝑇𝑇𝑇 )𝑊𝑊𝑊𝑊  (5) 

 
where 𝜑𝜑𝜑𝜑(𝑦𝑦𝑦𝑦) is a nonlinear function of the output vector y. Similar to Independent component 
analysis (ICA), feature analysis may also be utilised when each data vector is the outcome of the 
fusion of many independent sources. 

 
CSO is a nature-inspired optimization algorithm based on the behavior of crows, particularly their 
foraging behavior. It simulates the search process of crows for locating food sources and applies 
this concept to solving optimization problems. CSO utilizes a population of "crows" that iteratively 
search for the best solution in a multidimensional search space. By mimicking the social learning 
and information sharing behaviors of crows, CSO can effectively leverage the search space and 
explore it to discover ideal or almost ideal answers. The approach entails many stages to iteratively 
search in a multidimensional search space for an optimum or nearly ideal solution. The basic steps 
involved in CSO are as follows: 

 
Step 1: Initialization 
• Determine the problem's search space and the number of crows (population size). 
• Generate an initial population of crows randomly within the search space. 
• Assign fitness values to the crows based on their objective function evaluations. 

 
Step 2: Foraging Behavior 
• Divide the search space into different regions, called nests, representing potential solutions. 
• Each crow searches for food in its assigned nest and shares information with other crows. 

 
Step 3: Evaluate Fitness 
Calculate the fitness value for each crow based on its position in the search space and the objective 
function. 

 
Step 4: Communication and Information Sharing 
Crows exchange information about their food sources, which corresponds to sharing the best 
solutions found so far. 

 
Step 5: Update the Positions 
Update the position of each crow based on its current position, the information from other crows, 
and the exploration-exploitation balance. This is done by employing update strategies, of global 
search. 

 
Step 6: Check Termination Criteria 
• Evaluate if the termination criteria are met, such as reaching a maximum number of iterations 

or achieving a desired fitness value. 
• If the termination criteria are not met, go back to step 3. 

  (5)

where  is a nonlinear function of the output vec-
tor y. Similar to Independent component analy-
sis (ICA), feature analysis may also be utilised 
when each data vector is the outcome of the 
fusion of many independent sources.
CSO is a nature-inspired optimization algo-
rithm based on the behavior of crows, par-
ticularly their foraging behavior. It simulates 
the search process of crows for locating food 
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sources and applies this concept to solving op-
timization problems. CSO utilizes a population 
of “crows” that iteratively search for the best 
solution in a multidimensional search space. By 
mimicking the social learning and information 
sharing behaviors of crows, CSO can effective-
ly leverage the search space and explore it to 
discover ideal or almost ideal answers. The ap-
proach entails many stages to iteratively search 
in a multidimensional search space for an op-
timum or nearly ideal solution. The basic steps 
involved in CSO are as follows:

Step 1: Initialization
•	 Determine the problem’s search space and 

the number of crows (population size).
•	 Generate an initial population of crows 

randomly within the search space.
•	 Assign fitness values to the crows based on 

their objective function evaluations.

Step 2: Foraging Behavior
•	 Divide the search space into different re-

gions, called nests, representing potential 
solutions.

•	 Each crow searches for food in its assigned 
nest and shares information with other 
crows.

Step 3: Evaluate Fitness
Calculate the fitness value for each crow based 
on its position in the search space and the ob-
jective function.

Step 4: Communication and Information 
Sharing
Crows exchange information about their food 
sources, which corresponds to sharing the best 
solutions found so far.

Step 5: Update the Positions
Update the position of each crow based on its 
current position, the information from other 
crows, and the exploration-exploitation bal-
ance. This is done by employing update strate-
gies, of global search.

Step 6: Check Termination Criteria
•	 Evaluate if the termination criteria are 

met, such as reaching a maximum number 
of iterations or achieving a desired fitness 
value.

•	 If the termination criteria are not met, go 
back to step 3.

Step 7: Output
The CSO algorithm outputs the best solution 
found during the optimization process, along 
with its corresponding fitness value.
By leveraging the advantages of ICA and CSO, 
crop yield prediction models for soybean and 
onion can benefit from feature extraction, 
dimensionality reduction, global optimiza-
tion, versatility, robustness, and convergence. 
These techniques can enhance the accuracy, 
efficiency, and interpretability of the models, 
enabling better understanding and prediction 
of crop yields for informed decision-making 
in agriculture.

Classifier

Since Deep Convolutional Neural Network 
(DCNN) comprises several hidden layers and 
may acquire hierarchical presentations from 
the input pictures, it has a strong learning ca-
pacity. The learned characteristics grow more 
abstract as the convolutional neural network’s 
depth rises, which helps with the following 
classification challenge.

Proposed Algorithm
Input: Input data 
Output: Classified data 
Step1: 
Data normalization, 
Error removal Eoc 
Maximum length of the data 
Normalized data 

 
Step 7: Output 
The CSO algorithm outputs the best solution found during the optimization process, along with its 
corresponding fitness value. 

 
By leveraging the advantages of ICA and CSO, crop yield prediction models for soybean and 
onion can benefit from feature extraction, dimensionality reduction, global optimization, 
versatility, robustness, and convergence. These techniques can enhance the accuracy, efficiency, 
and interpretability of the models, enabling better understanding and prediction of crop yields for 
informed decision-making in agriculture. 

 
Classifier 
Since Deep Convolutional Neural Network (DCNN) comprises several hidden layers and may 
acquire hierarchical presentations from the input pictures, it has a strong learning capacity. The 
learned characteristics grow more abstract as the convolutional neural network's depth rises, which 
helps with the following classification challenge. 

 
Proposed Algorithm 
Input: Input data 
Output: Classified data 
Step1:  
Data normalization, 
Error removal 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐜𝐜𝐜𝐜 
Maximum length of the data 
Normalized data = 𝐳𝐳𝐳𝐳′ = (𝐳𝐳𝐳𝐳𝐳𝐳𝐳𝐳𝐳)

(𝐙𝐙𝐙𝐙𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦−𝐙𝐙𝐙𝐙𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦)
 

Step 2:  
Feature extraction with ICA-CSO 
Create feature subset 
Step 3:  
Relative closeness features estimation 
for optimized fitness features 
Selected features 
Step 4:  
Classification 
for 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 = 𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 = −𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 ∗ 𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪  �∑𝐒𝐒𝐒𝐒𝐯𝐯𝐯𝐯�/𝟐𝟐𝟐𝟐 𝟐 𝐞𝐞𝐞𝐞𝐦𝐦𝐦𝐦𝐞𝐞𝐞𝐞 (∑𝐜𝐜𝐜𝐜𝐨𝐨𝐨𝐨𝐜𝐜𝐜𝐜 (𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 ∗ 𝐒𝐒𝐒𝐒𝐯𝐯𝐯𝐯)/𝐝𝐝𝐝𝐝𝐨𝐨𝐨𝐨) + 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 
Hybrid 𝐄𝐄𝐄𝐄𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃 − 𝐈𝐈𝐈𝐈𝐃𝐃𝐃𝐃𝐈𝐈𝐈𝐈 − 𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐂𝐂𝐂𝐂 
Class merge 
flag 
end 

 
Convolutional and pooling layers are frequently arranged in sections, with a few completely 
coupled layers appearing last. To create deep architecture, multiple components are stacked. The 
network receives the dataset directly, uses a large number of convolution and pooling components, 
and then feeds the learned representations into fully connected layers. Finally, the output layer 
neurons that are directly associated with the neurons in the preceding layer offer a suggested label 
for classification. CNN presents the notion of a local receptive field as an alternative to fully 
connected neural networks. This implies that the whole input picture can be divided into numerous 
localised portions, each of which is connected with a distinct hidden unit, rather than attaching 
each hidden neuron to the complete input image. The number of parameters is greatly reduced 
through local connection, which also reduces the model's overall training difficulty. 

 

 
Step 2: 
Feature extraction with ICA-CSO 
Create feature subset 
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Step 3: 
Relative closeness features estimation 
for optimized fitness features
Selected features 
Step 4: 
Classification 
for  

 
Step 7: Output 
The CSO algorithm outputs the best solution found during the optimization process, along with its 
corresponding fitness value. 

 
By leveraging the advantages of ICA and CSO, crop yield prediction models for soybean and 
onion can benefit from feature extraction, dimensionality reduction, global optimization, 
versatility, robustness, and convergence. These techniques can enhance the accuracy, efficiency, 
and interpretability of the models, enabling better understanding and prediction of crop yields for 
informed decision-making in agriculture. 

 
Classifier 
Since Deep Convolutional Neural Network (DCNN) comprises several hidden layers and may 
acquire hierarchical presentations from the input pictures, it has a strong learning capacity. The 
learned characteristics grow more abstract as the convolutional neural network's depth rises, which 
helps with the following classification challenge. 

 
Proposed Algorithm 
Input: Input data 
Output: Classified data 
Step1:  
Data normalization, 
Error removal 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐜𝐜𝐜𝐜 
Maximum length of the data 
Normalized data = 𝐳𝐳𝐳𝐳′ = (𝐳𝐳𝐳𝐳𝐳𝐳𝐳𝐳𝐳)

(𝐙𝐙𝐙𝐙𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦−𝐙𝐙𝐙𝐙𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦)
 

Step 2:  
Feature extraction with ICA-CSO 
Create feature subset 
Step 3:  
Relative closeness features estimation 
for optimized fitness features 
Selected features 
Step 4:  
Classification 
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Convolutional and pooling layers are frequently arranged in sections, with a few completely 
coupled layers appearing last. To create deep architecture, multiple components are stacked. The 
network receives the dataset directly, uses a large number of convolution and pooling components, 
and then feeds the learned representations into fully connected layers. Finally, the output layer 
neurons that are directly associated with the neurons in the preceding layer offer a suggested label 
for classification. CNN presents the notion of a local receptive field as an alternative to fully 
connected neural networks. This implies that the whole input picture can be divided into numerous 
localised portions, each of which is connected with a distinct hidden unit, rather than attaching 
each hidden neuron to the complete input image. The number of parameters is greatly reduced 
through local connection, which also reduces the model's overall training difficulty. 
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Step 7: Output 
The CSO algorithm outputs the best solution found during the optimization process, along with its 
corresponding fitness value. 

 
By leveraging the advantages of ICA and CSO, crop yield prediction models for soybean and 
onion can benefit from feature extraction, dimensionality reduction, global optimization, 
versatility, robustness, and convergence. These techniques can enhance the accuracy, efficiency, 
and interpretability of the models, enabling better understanding and prediction of crop yields for 
informed decision-making in agriculture. 

 
Classifier 
Since Deep Convolutional Neural Network (DCNN) comprises several hidden layers and may 
acquire hierarchical presentations from the input pictures, it has a strong learning capacity. The 
learned characteristics grow more abstract as the convolutional neural network's depth rises, which 
helps with the following classification challenge. 

 
Proposed Algorithm 
Input: Input data 
Output: Classified data 
Step1:  
Data normalization, 
Error removal 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐜𝐜𝐜𝐜 
Maximum length of the data 
Normalized data = 𝐳𝐳𝐳𝐳′ = (𝐳𝐳𝐳𝐳𝐳𝐳𝐳𝐳𝐳)
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Convolutional and pooling layers are frequently arranged in sections, with a few completely 
coupled layers appearing last. To create deep architecture, multiple components are stacked. The 
network receives the dataset directly, uses a large number of convolution and pooling components, 
and then feeds the learned representations into fully connected layers. Finally, the output layer 
neurons that are directly associated with the neurons in the preceding layer offer a suggested label 
for classification. CNN presents the notion of a local receptive field as an alternative to fully 
connected neural networks. This implies that the whole input picture can be divided into numerous 
localised portions, each of which is connected with a distinct hidden unit, rather than attaching 
each hidden neuron to the complete input image. The number of parameters is greatly reduced 
through local connection, which also reduces the model's overall training difficulty. 

 

 
Class merge 
flag 
end
Convolutional and pooling layers are frequent-
ly arranged in sections, with a few completely 
coupled layers appearing last. To create deep 
architecture, multiple components are stacked. 
The network receives the dataset directly, uses a 
large number of convolution and pooling com-
ponents, and then feeds the learned represen-
tations into fully connected layers. Finally, the 
output layer neurons that are directly associated 
with the neurons in the preceding layer offer a 
suggested label for classification. CNN pres-
ents the notion of a local receptive field as an 
alternative to fully connected neural networks. 
This implies that the whole input picture can be 
divided into numerous localised portions, each 
of which is connected with a distinct hidden 
unit, rather than attaching each hidden neuron 
to the complete input image. The number of 
parameters is greatly reduced through local 
connection, which also reduces the model’s 
overall training difficulty.
Furthermore, while the biases and weights 
of each convolution kernel used to scan the 
whole image are identical, there are differenc-
es between the biases and weights of different 
convolution kernels. So a specific convolution 
kernel detects the same feature at different in-
put locations to ensure translation invariance. 
What matters is the trait itself, not where it is. 
The learned features from a single convolution 
kernel make form a feature map. To acquire 
relevant and sufficient features from the input, 
the classification task is accomplished by em-
ploying a number of convolution kernel types 
to build a range of feature maps. Due to shared 

weights and biases, the number of network pa-
rameters is greatly reduced, accelerating train-
ing. Doing a pooling operation after a convo-
lution operation is another way to reduce the 
spatial resolution of the learned features to 
enhance spatial invariance. Rectified Linear 
Unit (ReLU) is used as the activation function 
in CNN architecture to avoid saturation in tra-
ditional sigmoid and tanh functions. 
Many convolution kernels are used in a con-
volutional layer to extract information from 
the input. A set of trainable weights connects 
a tiny portion of the input to one neuron in a 
convolutional layer, and different portions are 
linked to various neurons. The whole network 
of neurons creates a feature map, and each neu-
ron has a linked region known as a receptive 
field. The trainable weights linking neurons and 
their receptive fields remain constant inside a 
single feature map, which is referred to as one 
convolution kernel. The convolution kernel acts 
as a feature extractor as a result, performing 
convolution on the input’s related areas before 
applying a nonlinear activation function and 
swiping over the whole input. Different con-
volution kernels are used to create many feature 
maps within one convolution layer to learn dif-
ferent features. Each convolution kernel learns 
one kind of feature from the input. Formally, 
the feature value of the kth feature map before 
nonlinear transformation is denoted byand can 
be determined as follows: 

	

Furthermore, while the biases and weights of each convolution kernel used to scan the whole image 
are identical, there are differences between the biases and weights of different convolution kernels. 
So a specific convolution kernel detects the same feature at different input locations to ensure 
translation invariance. What matters is the trait itself, not where it is. The learned features from a 
single convolution kernel make form a feature map. To acquire relevant and sufficient features 
from the input, the classification task is accomplished by employing a number of convolution 
kernel types to build a range of feature maps. Due to shared weights and biases, the number of 
network parameters is greatly reduced, accelerating training. Doing a pooling operation after a 
convolution operation is another way to reduce the spatial resolution of the learned features to 
enhance spatial invariance. Rectified Linear Unit (ReLU) is used as the activation function in CNN 
architecture to avoid saturation in traditional sigmoid and tanh functions.  

 
Many convolution kernels are used in a convolutional layer to extract information from the input. 
A set of trainable weights connects a tiny portion of the input to one neuron in a convolutional 
layer, and different portions are linked to various neurons. The whole network of neurons creates 
a feature map, and each neuron has a linked region known as a receptive field. The trainable 
weights linking neurons and their receptive fields remain constant inside a single feature map, 
which is referred to as one convolution kernel. The convolution kernel acts as a feature extractor 
as a result, performing convolution on the input's related areas before applying a nonlinear 
activation function and swiping over the whole input. Different convolution kernels are used to 
create many feature maps within one convolution layer to learn different features. Each 
convolution kernel learns one kind of feature from the input. Formally, the feature value of the kth 
feature map before nonlinear transformation is denoted by 𝑍𝑍𝑍𝑍𝑘𝑘𝑘𝑘 and can be determined as follows:  

 
𝑍𝑍𝑍𝑍𝑘𝑘𝑘𝑘 =  𝑊𝑊𝑊𝑊𝑘𝑘𝑘𝑘  ⨂𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘  (6) 

 
Where 𝑚𝑚𝑚𝑚 represents the input image; 𝑊𝑊𝑊𝑊𝑘𝑘𝑘𝑘 denotes the convolution kernel related to the k-th feature 
map and 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘  is bias term; ⨂ 

 
To minimise the spatial dimension of the convolved feature maps, a pooling layer is often added 
after the convolutional layer. By downsampling the feature maps produced by the preceding layer, 
input pictures are divided into numerous tiny areas, and a pooling function is used for each region 
to derive a new value, resulting in spatial invariance. High-level reasoning is carried out using 
fully-connected layers, where each unit is linked to every unit from the preceding layer until there 
are enough stacked groups of convolutional and pooling layers. The output layer uses the softmax 
operation to forecast the classification that each image belongs to for classification tasks. 

 
To train the created model to identify the right set of parameters so that the intended output may 
be attained, learning methods are used. Cross entropy loss is determined during training to assess 
the discrepancies between the built-in model's anticipated outputs and true labels. There are 
numerous techniques to optimise deep neural networks, and in this research, the adaptive moment 
estimation (Adam) optimisation algorithm is used. It is a substitute for the traditional stochastic 
gradient descent method and computes adaptive learning rates for various parameters while taking 
into account both the first and second moments of the gradients. It performs remarkably well when 
training a large number of parameters and reaches rapid convergence, increasing computation 
efficiency. 

 
RESULTS AND DISCUSSION 
 
Python was used to design the entire system. Numerous statistics, including those for crops, crop 
yield, location, soil and crop nutrients, and fertiliser, are acquired from various sources such as 
agricultural publications and websites. The dataset aims to predict the yield of soybean and onion 

 (6)
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Where represents the input image;  denotes the 
convolution kernel related to the k-th feature 
map and is bias term; 

Furthermore, while the biases and weights of each convolution kernel used to scan the whole image 
are identical, there are differences between the biases and weights of different convolution kernels. 
So a specific convolution kernel detects the same feature at different input locations to ensure 
translation invariance. What matters is the trait itself, not where it is. The learned features from a 
single convolution kernel make form a feature map. To acquire relevant and sufficient features 
from the input, the classification task is accomplished by employing a number of convolution 
kernel types to build a range of feature maps. Due to shared weights and biases, the number of 
network parameters is greatly reduced, accelerating training. Doing a pooling operation after a 
convolution operation is another way to reduce the spatial resolution of the learned features to 
enhance spatial invariance. Rectified Linear Unit (ReLU) is used as the activation function in CNN 
architecture to avoid saturation in traditional sigmoid and tanh functions.  

 
Many convolution kernels are used in a convolutional layer to extract information from the input. 
A set of trainable weights connects a tiny portion of the input to one neuron in a convolutional 
layer, and different portions are linked to various neurons. The whole network of neurons creates 
a feature map, and each neuron has a linked region known as a receptive field. The trainable 
weights linking neurons and their receptive fields remain constant inside a single feature map, 
which is referred to as one convolution kernel. The convolution kernel acts as a feature extractor 
as a result, performing convolution on the input's related areas before applying a nonlinear 
activation function and swiping over the whole input. Different convolution kernels are used to 
create many feature maps within one convolution layer to learn different features. Each 
convolution kernel learns one kind of feature from the input. Formally, the feature value of the kth 
feature map before nonlinear transformation is denoted by 𝑍𝑍𝑍𝑍𝑘𝑘𝑘𝑘 and can be determined as follows:  

 
𝑍𝑍𝑍𝑍𝑘𝑘𝑘𝑘 =  𝑊𝑊𝑊𝑊𝑘𝑘𝑘𝑘  ⨂𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘  (6) 

 
Where 𝑚𝑚𝑚𝑚 represents the input image; 𝑊𝑊𝑊𝑊𝑘𝑘𝑘𝑘 denotes the convolution kernel related to the k-th feature 
map and 𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘  is bias term; ⨂ 

 
To minimise the spatial dimension of the convolved feature maps, a pooling layer is often added 
after the convolutional layer. By downsampling the feature maps produced by the preceding layer, 
input pictures are divided into numerous tiny areas, and a pooling function is used for each region 
to derive a new value, resulting in spatial invariance. High-level reasoning is carried out using 
fully-connected layers, where each unit is linked to every unit from the preceding layer until there 
are enough stacked groups of convolutional and pooling layers. The output layer uses the softmax 
operation to forecast the classification that each image belongs to for classification tasks. 

 
To train the created model to identify the right set of parameters so that the intended output may 
be attained, learning methods are used. Cross entropy loss is determined during training to assess 
the discrepancies between the built-in model's anticipated outputs and true labels. There are 
numerous techniques to optimise deep neural networks, and in this research, the adaptive moment 
estimation (Adam) optimisation algorithm is used. It is a substitute for the traditional stochastic 
gradient descent method and computes adaptive learning rates for various parameters while taking 
into account both the first and second moments of the gradients. It performs remarkably well when 
training a large number of parameters and reaches rapid convergence, increasing computation 
efficiency. 

 
RESULTS AND DISCUSSION 
 
Python was used to design the entire system. Numerous statistics, including those for crops, crop 
yield, location, soil and crop nutrients, and fertiliser, are acquired from various sources such as 
agricultural publications and websites. The dataset aims to predict the yield of soybean and onion 

To minimise the spatial dimension of the con-
volved feature maps, a pooling layer is often 
added after the convolutional layer. By downs-
ampling the feature maps produced by the pre-
ceding layer, input pictures are divided into 
numerous tiny areas, and a pooling function is 
used for each region to derive a new value, re-
sulting in spatial invariance. High-level reason-
ing is carried out using fully-connected layers, 
where each unit is linked to every unit from the 
preceding layer until there are enough stacked 
groups of convolutional and pooling layers. The 
output layer uses the softmax operation to fore-
cast the classification that each image belongs 
to for classification tasks.
To train the created model to identify the right 
set of parameters so that the intended output 
may be attained, learning methods are used. 
Cross entropy loss is determined during training 
to assess the discrepancies between the built-
in model’s anticipated outputs and true labels. 
There are numerous techniques to optimise 
deep neural networks, and in this research, the 
adaptive moment estimation (Adam) optimis-
ation algorithm is used. It is a substitute for the 
traditional stochastic gradient descent method 
and computes adaptive learning rates for vari-
ous parameters while taking into account both 
the first and second moments of the gradients. It 
performs remarkably well when training a large 
number of parameters and reaches rapid con-
vergence, increasing computation efficiency.

RESULTS AND DISCUSSION

Python was used to design the entire system. 
Numerous statistics, including those for crops, 
crop yield, location, soil and crop nutrients, and 
fertiliser, are acquired from various sources 
such as agricultural publications and websites. 
The dataset aims to predict the yield of soybean 
and onion crops by analyzing environmental, 

soil, and agricultural factors. An innovative crop 
yield prediction model, employing a DCNN + 
CSO approach, was executed on a computing 
system featuring an AMD Ryzen 5 3600 6-Core 
Processor with a clock speed of 3.60 GHz and 
16 GB RAM. AICRP on Integrated Farming 
System, Mahatma Phule Krishi Vidyapeeth 
(MPKV), Rahuri, Maharashtra, India provided 
the dataset. This experiment they carried out 
for the Development of an Organic Farming 
Package for soybean, a newly introduced high 
valued, cropping system of the year 2006-
2007 to 2012-13 (7 years), This is an autho-
rized dataset prepared at Mahatma Phule Krishi 
Vidyapeeth( MPKV ) Rahuri with Latitude 
190 22.091’ , Longitude (0E) 740 38.660’ 
and Altitude(m, amsl) 539 Geographical Co-
ordinates with Plot size (m) Gross: 8.90 x 4.50   
Net    8.10 x 3.60 and Spacing Soybean- 45 cm 
x 10 cm.
 A dataset is prepared for Soybean crop yield 
with 65 different features majorly depending 
upon metrological parameters and soil pa-
rameters, In the dataset, we are considering 
various metrological parameters like relative 
humidity at 8:00 IST (RH I) and relative humid-
ity at 15:30 IST (RH II), maximum tempera-
ture  (Tmax), minimum temperature  (Tmin), 
Wind speed, Evaporation and Soil parame-
ters like Soil electrical conductivity   (EC), 
Soil Organic Carbon, Available Nitrogen, 
Available Phosphorus, Available Potassium, 
Uptake Nitrogen, Uptake Phosphorus, Uptake 
Potassium with 8 different soil treatment data 
(T1, T2, T3, T4, T5, T6, T7, T8) that is all soil 
parameters present in dataset 8 time for 8 differ-
ent treatment example: T1 Available Nitrogen, 
T1 Available Phosphorus, T1 Available 
Potassium, T1 Uptake Nitrogen, T1 Uptake 
Phosphorus, T1 Uptake Potassium. And dataset 
consists of output feature; yield by considering 
all 8 soil treatments. Using 80% of the available 
data, the model was trained, and the remaining 
20% was used for evaluation.
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Table 1. Performance metrics of the proposed 
method.

Parameters Soyabean Onion
Accuracy 97% 98.5%
Precision 99.3% 99.5%

Recall 99.56% 99%
F1 Score 97% 98%

 
 

Figure 2. Performance metrics attained for soyabean and onion yield prediction. 
 

The success indicators of the suggested approach for forecasting crop production in onion and 
soybean crops are shown in Table 1 and Figure 2. The method's excellent accuracy—98.5% for 
onions and 97% for soybeans—demonstrates the dependability of the predictions. 99.3% precision 
for soybeans and 99.5% precision for onions demonstrate how well the model reduces false 
positives. Its capacity to accurately identify true positives is demonstrated by recall rates of 99% 
for onions and 99.56% for soybeans. The robustness of the method is demonstrated by the F1 
scores, which balance precision and recall, which are 97% and 98% for soybean and onion, 
respectively. Combining these strategies allowed the suggested method to estimate yield with high 
accuracy, as seen by its robust findings (97% accuracy for soybeans and 98.5% for onions) and 
other metrics including precision, recall and F1 scores. The method offers practical insights, such 
as the best fertilizer recommendations, to increase agricultural output in addition to making 
accurate crop yield predictions. 
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Figure 2. Performance metrics attained for 
soyabean and onion yield prediction.

The success indicators of the suggested ap-
proach for forecasting crop production in on-
ion and soybean crops are shown in Table 1 
and Figure 2. The method’s excellent accura-
cy—98.5% for onions and 97% for soybeans—
demonstrates the dependability of the predic-
tions. 99.3% precision for soybeans and 99.5% 
precision for onions demonstrate how well the 
model reduces false positives. Its capacity to 
accurately identify true positives is demonstrat-
ed by recall rates of 99% for onions and 99.56% 
for soybeans. The robustness of the method is 
demonstrated by the F1 scores, which balance 
precision and recall, which are 97% and 98% 
for soybean and onion, respectively. Combining 
these strategies allowed the suggested method 
to estimate yield with high accuracy, as seen 

by its robust findings (97% accuracy for soy-
beans and 98.5% for onions) and other metrics 
including precision, recall and F1 scores. The 
method offers practical insights, such as the best 
fertilizer recommendations, to increase agricul-
tural output in addition to making accurate crop 
yield predictions.
The graph depicts the relationship between fit-
ness and the number of iterations for the ICA-
CSO algorithm used for feature selection in 
accurate crop yield prediction (Fig. 3). 

Figure 3. Fitness value attained for proposed 
ICA-CSO.

The fitness value indicates the quality or per-
formance of the selected features, with a lower 
value generally indicating better performance. 
According to the graph, at the 0th iteration, the 
fitness value is 0.0040. As the iterations prog-
ress, the fitness value increases and eventual-
ly drops to 0.0025 at the 50th iteration. This 
implies that during the initial iterations, the 
algorithm may not have found the optimal set 
of features, resulting in a higher fitness value. 
However, as the iterations continue, the algo-
rithm likely refines the feature selection process 
and identifies a subset of features that contrib-
utes to better accuracy in crop yield prediction. 
This leads to a decrease in the fitness value, 
indicating an improvement in the predictive 
performance.
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Figure 4. Error attained for proposed 
DCNN-ICA-CSO.

Based on the evaluation of the proposed DCNN 
(Deep Convolutional Neural Network) mod-
el with ICA-CSO (Independent Component 
Analysis-Crow Search Optimization) feature 
extraction, multiple performance metrics have 
been used to assess the accuracy of the crop 
yield prediction for soybean and onion (Fig. 
4). The metrics include MAE (Mean Absolute 
Error), MSE (Mean Squared Error), RMSE 
(Root Mean Squared Error), MARE (Mean 
Absolute Relative Error), RMSRE (Root Mean 
Squared Relative Error), and MSRE (Mean 
Squared Relative Error). The plot illustrates 
that the MSRE achieved the lowest error of 
0.45%, indicating that the predictions made by 
the DCNN model with ICA-CSO feature ex-
traction have a small average deviation from 
the actual values. On the other hand, the RMSE 
exhibited the maximum error at 0.67%, repre-
senting the average magnitude of the deviations 
between predicted and actual values are still 
low. Furthermore, the other performance met-
rics like MAE resulted in an error of 0.48%, 
indicating the average absolute difference be-
tween the predicted and actual values. The MSE 
was found to be 0.47%, representing the aver-
age squared difference between predictions and 
actual values. The MARE resulted in an error of 

0.5%, reflecting the average relative deviation 
between the predicted and actual values. Lastly, 
the RMSRE yielded an error of 0.64%, repre-
senting the average squared relative difference 
between predictions and actual values. Overall, 
the obtained results indicate the optimum per-
formance of the proposed DCNN model with 
ICA-CSO feature extraction for soybean and 
onion crop yield prediction. These metrics 
demonstrate the accuracy of the predictions 
made by the model, with small errors and de-
viations between predicted and actual values. 
A comparative analysis was conducted between 
the proposed DCNN+ICA-CSO model and 
several other variations, namely DCNN+MFO 
(Modified Firefly Optimization), DCNN+PSO 
(Particle Swarm Optimization), DCNN+GWO 
(Grey Wolf Optimization), and DCNN+WOA 
(Whale Optimization Algorithm). The evalua-
tion was based on the MSRE (Mean Squared 
Relative Error) values obtained from the pre-
dictions (Fig. 5).

Figure 5. Comparative analysis based on 
MSRE of DCNN-ICA-CSO.

The results reveal that the proposed 
DCNN+ICA-CSO model achieved the lowest 
MSRE value of 0.45%, indicating its superior 
performance in terms of the average relative 
deviation between the predicted and actual 
values. In comparison, the MSRE values of 
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the other models were found to be higher, with 
DCNN+MFO at 0.97%, DCNN+PSO at 1.34%, 
DCNN+GWO at 1.47%, and DCNN+WOA at 
2.34%.
The comparison demonstrates that the proposed 
DCNN+ICA-CSO model outperforms the oth-
er models in terms of accuracy and predictive 
power, as evidenced by its significantly lower 
MSRE value. This suggests that the integration 
of Independent Component Analysis (ICA) and 
Crow Search Optimization (CSO) in the fea-
ture extraction process provides a more effec-
tive representation of the data for crop yield 
prediction. 

Figure 6. Comparative analysis based on 
MARE of DCNN-ICA-CSO.
 
The lower MSRE value indicates reduced devi-
ations and improved precision in the predictions 
made by the proposed model.
The graph presented illustrates a compara-
tive analysis of the proposed DCNN+ICA-
CSO model with other variations, including 
DCNN+MFO (Modified Firefly Optimization), 
DCNN+PSO (Particle Swarm Optimization), 
DCNN+GWO (Grey Wolf Optimization), 
and DCNN+WOA (Whale Optimization 
Algorithm). The evaluation was based on the 
MARE (Mean Absolute Relative Error) values 
obtained from the predictions.
According to the graph, the proposed  

DCNN+ICA-CSO model achieved a minimal 
MARE value of 0.5%, indicating its superior 
performance in terms of the average relative 
deviation between the predicted and actual 
values (Fig. 6). On the other hand, the MARE 
values for the other models were higher, with 
DCNN+MFO at 0.93%, DCNN+PSO at 1.02%, 
DCNN+GWO at 1.48%, and DCNN+WOA at 
2.4%. The results highlight the potential of 
the proposed DCNN+ICA-CSO model as a 
promising approach for crop yield prediction, 
showcasing its ability to achieve more accurate 
and reliable results compared to the other opti-
mization algorithms considered in the analysis.

Figure 7. Comparative analysis based on MSE 
of DCNN-ICA-CSO.

The graph depicting the Comparative Analysis 
of the proposed DCNN+ICA-CSO model 
with other variations, including DCNN+MFO 
(Modified Firefly Optimization), DCNN+PSO 
(Particle Swarm Optimization), DCNN+GWO 
(Grey Wolf Optimization), and DCNN+WOA 
(Whale Optimization Algorithm), focuses on 
the evaluation of Mean Squared Error (MSE) 
values (Fig. 7).
According to the graph, the proposed 
DCNN+ICA-CSO model achieved a min-
imal MSE value of 0.47%, indicating its su-
perior performance in terms of the average 
squared difference between the predicted and 
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actual values. On the other hand, the MSE 
values for the other models were higher, with 
DCNN+MFO at 0.68%, DCNN+PSO at 0.97%, 
DCNN+GWO at 1.38%, and DCNN+WOA 
at 1.97%. This analysis demonstrates that the 
proposed DCNN+ICA-CSO model outperforms 
the other models in terms of accuracy and pre-
cision, as evidenced by its significantly lower 
MSE value. 

Figure 8. Comparative analysis based on MAE 
of DCNN-ICA-CSO.

The integration of Independent Component 
Analysis (ICA) and Crow Search Optimization 
(CSO) in the feature extraction process appears 
to provide a more effective representation of the 
data for accurate crop yield prediction.
The graph comparing the DCNN+ICA-
CSO model with other variations, such as 
DCNN+MFO, DCNN+PSO, DCNN+GWO, 
and DCNN+WOA, evaluates Mean Absolute 
Error (MAE) values (Fig. 8). The DCNN+ICA-
CSO model achieved a minimal MAE value 
of 0.48%, indicating superior performance in 
terms of average absolute difference between 
predicted and actual values. The other models 
had higher MAE values, with DCNN+MFO at 
0.6%, DCNN+PSO at 0.62%, DCNN+GWO 
at 1.08%, and DCNN+WOA at 1.6%. The 
proposed DCNN+ICA-CSO model outper-
forms other models in terms of accuracy and 

precision, with a significantly lower MAE val-
ue. The integration of Independent Component 
Analysis (ICA) and Crow Search Optimization 
(CSO) in feature extraction provides a more 
effective representation of data for accurate 
crop yield prediction. The results highlight the 
potential of the DCNN+ICA-CSO model as a 
promising approach for crop yield prediction, 
achieving more accurate and reliable results 
compared to other optimization algorithms.

Figure 9. Comparative analysis based on 
RMSE of DCNN-ICA-CSO.

According to the graph depicting the Compara
tive Analysis of the proposed DCNN+ICA-CSO 
model with other variations (DCNN+MFO, 
DCNN+PSO, DCNN+GWO, DCNN+WOA), 
the proposed model achieved a minimal RMSE 
(Root Mean Squared Error) value of 0.68%. 
In comparison, the RMSE values for the oth-
er models are as follows: DCNN+MFO at 
0.78%, DCNN+PSO at 0.93%, DCNN+GWO 
at 1.36%, and DCNN+WOA at 1.95% (Fig. 
9). The lower RMSE value for the proposed 
DCNN+ICA-CSO model suggests that it out-
performs the other models in terms of accura-
cy and precision. The reduced RMSE indicates 
smaller deviations between the predicted and 
actual values, showcasing the superior perfor-
mance of the proposed model for crop yield 
prediction. These results highlight the poten-
tial and effectiveness of the DCNN+ICA-CSO 
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model as a promising approach for accurate 
crop yield prediction. It demonstrates its ability 
to achieve more accurate and reliable predic-
tions compared to the other optimization algo-
rithms considered in the analysis.

Figure 10. Comparative analysis based on 
RMSRE of DCNN-ICA-CSO.

The suggested model produced a minimal 
RMSRE (Root Mean Squared Relative Error) 
value of 0.64%, as shown in the graph com-
paring it to other versions (DCNN+MFO, 
D C N N + P S O ,  D C N N + G W O ,  a n d 
DCNN+WOA). In contrast, the RMSRE values 
for the other models are as follows: 0.99% for 
DCNN+MFO, 1.97% for DCNN+PSO, 2.38% 
for DCNN+GWO, and 2.67% for DCNN+WOA 
(Fig. 10). The suggested DCNN+ICA-CSO 
model performs better than the other models 
in terms of accuracy and precision in predict-
ing crop production, as evidenced by its lower 
RMSRE value. The decreased RMSRE high-
lights the greater performance of the suggested 
model by denoting fewer relative deviations be-
tween the anticipated and actual values.

CONCLUSIONS

Higher agricultural yields may be produced, 
as evidenced by the location-based crop yield 

forecast and effective algorithm implementa-
tion. From the foregoing research, the authors 
conclude that DCNN with ICA-CSO is superior 
to DCNN+MFO, DCNN+PSO, DCNN+GWO, 
and DCNN+WOA for soil classification, with 
an accuracy rate of 97.35%. Using DCNN in 
conjunction with ICA and CSO to forecast agri-
cultural yields has benefits including enhanced 
feature extraction, dimensionality reduction, 
parameter optimization, accuracy, robustness, 
generalization, and automated feature learning. 
These methods can help predict crop yields 
with more accuracy and dependability, assisting 
in agricultural decision-making and improving 
farming methods. However, the work may be 
further expanded to include the following fea-
tures with the creation of a mobile application 
to assist farmers by uploading images of their 
fields. Crop diseases may be found using image 
processing, and users can order pesticides based 
on disease photos. Smart irrigation systems can 
also be used by farmers to increase productivity.
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