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GENERAL INFORMATION ON THE WORK

Ph.D. THESIS “Dynamic models of biological networks” was developed in
Daugavpils University Department of Environment and Technologies during
2015 - 2024.

This work has been supported by the ESF Project No. 8.2.2.0/20/I/003
“Strengthening of Professional Competence of Daugavpils University Aca-
demic Personnel of Strategic Specialization Branches 3rd Call”.

Doctoral study programme: Mathematics, the sub-branch of “Differen-
tial equations”.

Author of the work: Diana Ogorelova.

Scientific supervisor: Professor, Dr.habil.math. Felix Sadyrbaev, Dau-
gavpils University; Institute of Mathematics and Informatics of the Univer-
sity of Latvia.

The Reference list contains 65 items.

Keywords: differential equations, mathematical modeling, gene regulatory
networks, neuronal networks, phase space, attractors, bifurcations.

The doctoral thesis is a set of scientific publications written and published
during the years 2015 - 2024. All papers are published in scientific journals
or in article books of some conferences. The set of publications contains 14
([29]-[33], [35]-[41], [43], [54]) scientific articles, seven ([35], [36], [38], [40],
[41], [43], [54]) were published in the journals indexed in SCOPUS and one
of them ([39]) has been published in the Axioms MDPI (indexed in WoS,
Q2) journal.

The promotional work is devoted to the study of systems of ordinary
differential equations that arise in the theory of complex networks. The gene
regulatory networks (GRN networks) and artificial neural networks (ANN
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networks) are networks of this type.

The object of the promotional work is a certain class of systems of ordi-
nary differential equations (ODE). These systems have a special quasi-linear
structure and contain both linear and nonlinear parts. The nonlinear part
is represented by sigmoidal functions. The Gompertz function is selected of
them.

Aims of research : The aim of the work is to study one class of systems
of ordinary differential equations that arise in the theory of gene networks
and artificial neural networks. These systems consist of nonlinear and linear
parts. The nonlinear part is represented by sigmoidal functions, of which
the Gompertz function and the hyperbolic tangent function are used in the
work. Special attention is paid to the study of the properties of attractors,
the analysis of the evolution of systems, and the prediction of the behavior
of solutions.

The research tasks :

• define a system of ODE modeling GRN and using the Gompertz func-
tion as a nonlinearity;

• obtain formulas for the study of the critical points of GRN type sys-
tems;

• compare the results for GRN systems using Gompertz function with
similar systems using other sigmoidal functions;

• transfer the results obtained for GRN systems to systems arising in
ANN theory and containing the hyperbolic tangents function as a non-
linearity;

• compare the results obtained for GRN systems with the results ob-
tained for ANN systems;

• compare the results of periodic attractors in GRN and ANN systems,
as well as construct relevant examples;

• prove the existence of periodic attractors for GRN and ANN systems
focusing on similarity of both systems;

• prove the existence of periodic attractors for GRN and ANN systems
of order two, three and higher;
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• detected sensitive dependence of solutions to ANN systems by calcu-
lating Lyapunov exponents;

• provide some observations and remarks on the problem of controllabil-
ity and management of GRN and ANN systems.

Methods used in the study :

• linearization and local analysis of critical points;

• constructing periodic attractors by using Andronov–Hopf bifurcation
from stable focus;

• constructing systems of higher dimensions by using low-dimensional
blocks and then coupling systems by adding new elements;

• geometrical analysis of phase plane and phase spaces considering the
nullclines;

• analyzing phase spaces and vector fields associated with GRN and ANN
systems with respect to invariant sets;

• detecting of sensitive dependence of solutions to GRN and ANN sys-
tems by calculating Lyapunov exponents;

• extensive use of computational experiments in studying GRN and ANN
systems.

The results were communicated at several conferences of different levels, in-
cluding 11 International Scientific Conferences:

1. 82 st International Scientific Conference of the University of Latvia with
the report “Remarks on mathematical modeling of gene and neuronal
networks” (Riga, February 23, 2024);

2. International Conference of Numerical Analysis and Applied Mathe-
matics 2023 (ICNAAM 2023) with the report “On control over system
arising in the theory of neuronal networks” (Crete, Greece, September
11-17, 2023);

3. 26 th International Conference on Mathematical Modelling and Anal-
ysis with the report “Comparative analysis of models of genetic and
neuronal networks” (Jurmala, May 30 - June 2, 2023);
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4. 65 st International Scientific Conference of Daugavpils University with
the report “On linearization on some system arising in the theory of
neural networks, in the neighborhood of a critical point ” (Daugavpils,
April 20, 2023);

5. 81 st International Scientific Conference of the University of Latvia
with the report “On computation of parameters in Artificial Neural
Networks mathematical models” (Riga, February 24, 2023);

6. 61 st International Conference on Vibroengineering with the report “On
a three-dimensional neural network model” (Udaipur, India, December
12-13, 2022);

7. International Liberty Interdisciplinary Studies Conference with the re-
port “Mathematical modeling of three-dimensional genetic regulatory
networks using different sigmoidal functions” (Manhattan, New York,
January 16-17, 2022);

8. 1 st International Symposium on Recent Advances in Fundamental and
Applied Sciences (ISFAS-2021) with the report “Mathematical mod-
elling of GRN using different sigmoidal functions” ( Erzurum, Turkey,
September 10-12, 2021);

9. 79 th Scientific Conference of the University of Latvia with the re-
port “Andronov - Hopf bifurcation in 2D systems” (Riga, February 26,
2021);

10. 78 th Scientific Conference of the University of Latvia with the report
“Gompertz function in the model of gene regulation network” (Riga,
February 28, 2020);

11. 77 th Scientific Conference of the University of Latvia with the report
“Z-shaped isoclines in GRN differential system” (Riga, February 18,
2019);

12. 76 th Scientific Conference of the University of Latvia with the re-
port “Gompertz sigmoidal function in the 2-component network model”
(Riga, February 23, 2018);

13. 60 th International Scientific Conference of Daugavpils University with
the report “Critical points for sigmoidal function” (Daugavpils, April
27, 2018);
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14. 12 th Latvian Mathematical Conference with the report “Critical points
for sigmoidal function” (Ventspils, April 13- 14, 2018);

15. 11 th Latvian Mathematical Conference with the report “Solvability
conditions of the resonant problem” (Daugavpils, April 14, 2016);

16. 57 th International Scientific Conference of Daugavpils University with
the report “Dirichlet boundary value problem for one system of differ-
ential equations” (Daugavpils, April 12, 2015);

17. 56 th International Scientific Conference of Daugavpils University with
the report “The Dirichlet boundary value problem for a system of two
second-order differential equations” (Daugavpils, April 8, 2014).
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1 INTRODUCTION

In this work, we consider problems arising in mathematical modeling of net-
works. We focus on modeling gene regulatory networks and artificial neuronal
networks. Networks of this type are everywhere. They consist generally of
elements which are usually called nodes and links between nodes. The nature
of networks may be different. Networks are present in nature, human society,
literally everywhere. They can be enormously large, like networks of astro-
nomical objects, stars, planets, and galaxies. At the same time, they can be
very small and even unrecognizable and not seen by unarmed eyes, for ex-
ample, the gene networks in a living organism. To understand the structure
and principles of functioning of networks in nature, scientists should collect
huge files of the results of observations. These data are to be collected, sys-
tematized, analyzed, and classified. Sometimes and even usually this is a
very hard task. To make this task easier, the mathematical modeling can be
used. As usually, the mathematical models are objects existing in the virtual
realm of mathematics. These objects should be created, step-by-step veri-
fying their adequacy according to the researched phenomena. Experiments
should be done in a model. The analysis is of a mathematical nature, and
the mathematical tools, standard or created exactly for a particular object of
the study, are to be used to analyze the model. The results are recorded, sys-
tematized, and classified. Hypotheses are formulated in order to understand
better the object of the study. Hypotheses are to be verified, and either to
be confirmed or disproved.

Simple networks, like groups of humans, small populations, a number of
static objects can be investigated using the mathematical apparatus of the
graph theory. Graphs consist of vertices, edges between vertices, and charac-
teristics of both vertices and edges. Sometimes graphs can be visualized and
analyzed straightforwardly. For networks of large size, this can be a com-
plicated task. As an example, one might think of transportation networks,
networks of industrial objects, and so on.

The structure and properties of networks may change over time, and
these are the more interesting networks. Based on the analysis of the past
of a network, and knowing its main principles of functioning, one may think
about predicting of future states of networks. Depending on the nature of a
network, this may be the most important challenge.

To illustrate this, let us speak about genetic networks. The existence
of genetic networks was not known before the great finding in the field of
genetics and biology in general. Now it is known, that genetic networks
are present in any cell of any living organism. It can be imagined as a
collection of nodes, which are to be called genes, which communicate with
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each other. How do they do this? They are sending messages in the form
of proteins. These messages are accepted by other genes, and the whole
network elaborates common reactions. For instance, a genetic network is
responsible for the reaction of an organism to diseases. They govern the
most important processes in the growing animal or human. Their activity
is decisive in morphogenesis, the process of formation of the internal organs.
Due to the investigation of geneticists, biologists, and zoologists, the spots on
a leopard, and strips on tigers and zebras appear as the result of programming
in genomics, and the formation of these properties takes place under the
control of gene networks.

Another example of a network is a collection (huge) of neurons in a hu-
man’s brain. Neurons accept electrical signals from other elements of a net-
work and produce their own signals, which are transferred further. The
collective reaction, quick or not, depending on a situation, helps a human
to perform its usual functions, like work, communicating with society, and
solving creative and algorithmically defined problems. It was amazing that
a human can easily recognize images, which is a difficult task for robots and
controllable devices. This type of network belongs to biological neural net-
works. There are still many problems that can be solved by humans better
than a computer or other automaton can do. Attempts to copy the work of
a human brain have led to artificial neural networks (ANN briefly). ANN is
a collection of units, which are called artificial neurons. These units are con-
nected. They can transmit an accepted signal to other units. An artificial
neuron receives signals and transmits them after being processed to other
neurons connected to it.

The dynamics of both types of networks, GRN (gene regulatory networks)
and ANN can be modeled by ordinary differential equations. Each element of
a network is denoted by xi. The physical meaning of xi is, of course, different
for GRN and ANN. Mathematics as a fundamental science that knows many
examples of physical, mechanical, chemical, etc. processes, which are quite
different in nature, but described by similar mathematical models. This is
the case for GRN and ANN. Both have a finite, but probably very large
number of elements, which we will denote by xi. Each xi can be measured
(mostly imaginary) by a number, which is denoted also xi, but it is dependent
on time, xi(t). So an investigator deals with a number of functions, which are
dependent on each other. The collection of xi(t), i = 1, 2, . . . , forms the phase
space, which mathematically is Euclidian. The relations between elements xi

should be described. One, very rough, way to do this, is to define the so called
regulatory matrix, which is denoted usually W. It is n × n matrix, where n
is the number of elements in a network. The element wij is a number, that
characterizes the influence of an element xj on the element xi. The convention
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is, that positive elements of the matrix W mean activation, negativity means
repression (also called inhibition), and zero value of wij means no relation.
Once these preparations are made, the system of differential equations can be
produced, which describes the dynamics of a network, since functions xi(t)
change in time following the rules, defined by a system of ordinary differential
equations (ODE briefly). The great feature of studying the relative system of
ODE is that one might use the mathematical apparatus for the study of such
systems and to make predictions on the behavior of solutions xi(t), which
are considered now as solutions in a system of ODE. The mentioned systems
were defined earlier for GRN networks, and for ANN networks. When we
look at those systems, we observe certain similarities. That means that these
systems can be studied simultaneously, and results obtained for GRN systems
can be used for the study of ANN systems, and vice versa.

This is the main thrust of the presented work.
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DESCRIPTION OF THE SET OF SCIENTIFIC PUBLICA-
TIONS

Here we provide a brief description of the articles in the set of articles
forming this thesis.

In the article “Ogorelova D. Gompertz function in the model of
gene regulation network. Proceedings LU MII, vol 18 (2018), 23–
32” 2D-model of gene regulation network is considered where the sigmoidal
function is the Gompertz function. The description of attractors is obtained
depending on parameters.

The article “Ogorelova D. Description of critical points in equa-
tions arising in applications. Sigmoidal functions in network the-
ories. Proceedings LU MII, vol 19 (2019), 50–56” contains a de-
scription of a three-dimensional GRN type system, where nonlinearity may
be any sigmoidal function. Then the author focuses on the case of Gom-
pertz nonlinearity. Formulas for the linearization of the system are derived.
Formulas are applied to analyze two examples.

The article “Ogorelova D., Sadyrbaev F., Sengileyev V. Control
in Inhibitory Genetic Regulatory Network Models Contemporary
Mathematics (Singapore), 2020, 1(5), pp. 393-400” studies the
system of two first order ordinary differential equations arising in the gene
regulatory networks theory. The structure of attractors for this system is
described for three important behavioral cases: activation, inhibition, and
mixed activation-inhibition. The geometrical approach combined with the
vector field analysis allows for treating the problem in full generality. A num-
ber of propositions are stated and the proof is geometrical, avoiding complex
analytics. Although not all the possible cases are considered, instructions
are given on how to handle specific situations.

The article “D. A. Ogorelova, F. Zh. Sadyrbaev. Gompertz
function in the model of gene regulatory networks. Itogi Nauki i
Tekhniki. Seriya “Sovremennaya Matematika i ee Prilozheniya.
Tematicheskie Obzory”, 2021, Vol. 195, pp. 88–96” examines
a network model (including gene regulatory networks), which consists of a
system of two ordinary differential equations. This system contains several
parameters and depends on the regulatory matrix, which describes interac-
tions in this two-component network. We consider attracting sets of the
system, which vary depending on the parameters and elements of the regu-
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latory matrix. Our considerations are of a geometric nature, which allows us
to identify and classify possible interactions in the network. The system of
differential equations contains a sigmoidal function, which makes it possible
to take into account the peculiarities of the networks response to external
influences. The Gompertz function was chosen as the sigmoidal function,
which allows us to compare the results with similar results for models of
two-component networks based on the logistic sigmoidal function.

The article “Ogorelova D., Sadyrbaev F. On a three-dimensional
neural network model. Vibroengineering Procedia. 2022, vol. 47,
pp. 69-73” studies the dynamics of a model of neural networks. It is shown
that the dynamical model of a three-dimensional neural network can have
several attractors. These attractors can be in the form of stable equilibria
and stable limit cycles. In particular, the model in a question can have two
three-dimensional limit cycles.

In the article “Ogorelova D. On a system of ordinary differen-
tial equations, arising in applications. Proceedings LU MII, vol
22 (2022), 5–12”, the two-dimensional system of ANN type is considered.
The nonlinearity in the system is the hyperbolic tangent function. The coeffi-
cients at x1 and x2 which are interpreted as signals of two neurons for matrix
A, which play the same role, as the regulatory matrix W in GRN theory.
Several cases of interaction of two neurons are considered. The graphical
analysis of nullclines is made and the characteristics of critical points are
obtained. The article is well illustrated.

In the article “Ogorelova D., Sadyrbaev F. Periodic attractors in
GRN and ANN networks. IEEE Xplore, 2023, 4” who provides the
conditions for the existence of a periodic solution in two-dimensional systems
of ordinary differential equations, which arise in the theory of genetic and
artificial neural networks. The proof is based on Poincare-Andronov-Hopf
bifurcation. Multidimensional attractors can be constructed using the two-
dimensional ones. Illustrations and examples are provided.

The paper “Samuilik I., Sadyrbaev F., Ogorelova D. Compar-
ative Analysis of Models of Gene and Neural Networks. Con-
temporary Mathematics (Singapore), 2023, 4(2), pp. 217–229”
describes in the language of mathematics, the method of cognition of the
surrounding world in which the description of the object is carried out the
name is mathematical modeling. The study of the model is carried out us-
ing certain mathematical methods. The systems of the ordinary differential
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equations modeling artificial neuronal networks and the systems modeling the
gene regulatory networks are considered. One system consists of a sigmoidal
function which depends on linear combinations of the arguments minus the
linear part. Other system consists of a sigmoidal function which depends
on the hyperbolic tangent function. The linear combinations and hyperbolic
tangent functions of the arguments are described by one regulatory matrix.
For the three-dimensional cases, two types of matrices are considered and
the behavior of the solutions of the system is analyzed. The attracting sets
are constructed for several cases. Illustrative examples are provided.

The article “Ogorelova, D., Sadyrbaev, F., Samuilik, I. On Tar-
geted Control over Trajectories of Dynamical Systems Arising in
Models of Complex Networks. Mathematics, 2023, 11(9), 2206”
considers the question of targeted control over trajectories of systems of
differential equations encountered in the theory of genetic and neural net-
works. Examples are given of transferring trajectories corresponding to net-
work states from the basin of attraction of one attractor to the basin of
attraction of the target attractor. This article considers a system of ordi-
nary differential equations that arises in the theory of gene networks. Each
trajectory describes the current and future states of the network. The ques-
tion of the possibility of reorienting a given trajectory from the initial state
to the assigned attractor is considered. This implies only partial control of
the network. The difficulty lies in the selection of parameters, the change of
which leads to the goal. Similar problems arise when modeling the response
of the bodies gene networks to serious diseases (e.g., leukemia). Solving such
problems is the first step in the process of applying mathematical methods
in medicine and pharmacology.

In the article “Ogorelova D., Sadyrbaev F., Samuilik I. On at-
tractors in dynamical systems modeling genetic networks. Ad-
vances in the Theory of Nonlinear Analysis and its Applications,
2023, 7(2), pp. 486-498” is studied a dynamical system that arises in
the theory of genetic networks. Attracting sets of a special kind is the focus
of the study. These attractors appear as combinations of attractors of lower
dimensions, which are stable limit cycles. The properties of attractors are
studied. Visualizations and examples are provided.

The paper “Ogorelova D. Mathematical modeling of gene and
neuronal networks by ordinary differential equations. Proceed-
ings LU MII, vol 23 (2023), 33–45” contains an analysis of three-
dimensional systems of ODE, arising in GRN networks theory and in ANN
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theory. The first system uses the logistic function f(z) = 1
1+exp−µz as a non-

linearity, and the second system uses the hyperbolic tangent function. The
formulas for linearization around critical points are calculated analytically.
The inhibition-activation case was analyzed. The Andronov-Hopf bifurcation
is explained. The article is well illustrated.

The paper “Ogorelova D., Sadyrbaev F. Remarks on mathemat-
ical modeling of gene and neuronal networks by ordinary differ-
ential equations. Axioms MDPI, 2024, 13(1), pp. 61” considers
the mathematical apparatus that uses dynamical systems that are fruitfully
used in the theory of gene networks. The same is true for the theory of
neural networks. In both cases, the purpose of the simulation is to study the
properties of phase space, as well as the types and properties of attractors.
The paper compares both models, notes their similarities, and considers a
number of illustrative examples. A local analysis is carried out in the vicinity
of critical points and the necessary formulas are derived.

The article “Ogorelova D., Sadyrbaev F. Comparative Analy-
sis of Models of Genetic and Neuronal Networks. Mathematical
Modelling and Analysis, 2024, 29(2), pp. 277–287” provides the
comparative analysis of systems of ordinary differential equations, modeling
gene regulatory networks and neuronal networks. Asymptotical behavior of
solutions and types of attractors are of the study. Emphasis is made on the
chaotic behavior of solutions.

In the article “Ogorelova D., Sadyrbaev F. On control over the
system arising in the theory of neuronal networks. Interna-
tional Conference of Numerical Analysis and Applied Mathemat-
ics 2023 (ICNAAM 2023). (in print)” a multiparameter system of
ordinary differential equations, arising in the theory of neuronal networks, is
considered. The structure of this system presupposes the presence of attrac-
tors. The problem of control and management of this system by changing
parameters is considered. The conditions are given for the transition of the
trajectory from the basin of attraction of one attractor to another attractor.
Examples and illustrations are provided.
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2 CONCLUSIONS

The work is devoted to the study of systems of ordinary differential equations
arising in mathematical models of GRN and ANN.
The main results of the Doctoral thesis are:

• analysis of the phase plane for two dimensional GRN system with the
Gompertz nonlinearities, counting critical points and their characteris-
tics;

• formulas for linearization and analysis of critical points in GRN and
ANN systems;

• examples of periodic attractors in GRN and ANN systems;

• basic properties of ANN systems with hyperbolic tangent nonlinearities;

• comparison of GRN and ANN systems;

• local analysis of critical points of GRN and ANN systems for dimensions
two and three;

• graphical images of nullclines for many relevant to the study cases;

• sensitive dependence of solutions to GRN and ANN systems by calcu-
lating Lyapunov exponents;

• control of two dimensional inhibitory GRN systems;

• control by changing parameters over systems with hyperbolic tangent
nonlinearities.
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Gompertz function in the model of gene regulation
network

Diana Ogorelova

Summary.

2D-model of gene regulation network is considered where the sigmoidal function is the
Gompertz function. The description of attractors is obtained depending on parameters.

MSC: 34C10, 34D45, 92C42

1 Introduction

In the theory of gene regulatory networks differential systems are of the type

x′

i = f(
∑

wijxj) − xi. (1)

This system describes interrelation between elements (genes) of a gene network. We
omit the mechanism of this interrelation and focus on the mathematical aspect. The
function f(z) in this model is a continuous bounded monotonically increasing function
(that is called sigmoidal regulatory function). Matrix W consists of entries describing
the relation between nodes of the networks. There are various functions f possessing the
desired properties. For instance, the function f(z) = 1

1+e−µz meets the requirements. The
argument z is substituted by z = Σwijxj − θ and it represents the input on a gene with
threshold θ for increasing xi. The function f(z) is a sigmoidal (monotone and bounded)
function and 2 × 2 matrix W consists of entries that take values from the set {−1, 0, 1}.
Systems of this kind appear in gene regulatory theory. The structure of attracting sets is
studied.
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2 The Formulation of the Problem

Two-component gene regulatory networks are described by the differential system

{

x′

1 = f(x2) − x1,

x′

2 = f(x1) − x2.
(2)

where f(x) is a sigmoidal function.

Definition 1. A function is called sigmoidal if the following is satisfied.

1. f(x) monotonically increases from 0 to 1, x ∈ R;

2. It has exactly one inflection point.

Consider the Gompertz function f(z) = e−e−µz

. This function is sigmoidal in the sense
of Definition 1.

The system in extended form is



















dx1

dt
= e−e−µ(x2−θ)

− x1,

dx2

dt
= e−e−µ(x1−θ)

− x2,

(3)

where µ and θ are positive parameters. Our goal is to study the phase portrait and the
attracting sets of this system.

Gompertz function is sigmoidal function. The grapf of f and graphs of f ′ and f ′′ are
depicted in Fig. 2.1 for the values of parameters µ = 6.5 and θ = 0.3. It is convex in some
neighborhood of zero and then it is concave. It is bounded by 1 and it is monotonically
increasing.

0.2 0.4 0.6 0.8 1.0
x

-5

5

10

Fig. 2.1. Solid - f(x), dashed - f ′(x), dotted - f ′′(x)
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3 System for critical points

It is supposed that f(z) is dependent also on a parameter µ that regulates steepness of
the graph of f . We wish to state general properties of the system (3).

Critical points of this system are solutions of







0 = e−e−µ(x2−θ)
− x1,

0 = e−e−µ(x1−θ)
− x2.

(4)

Lemma 1. Any critical point is of the form (x, x). Therefore, the coordinate x of a

critical point is defined from

x = f(x). (5)

The graphs of y = f(x) and y = f−1(x) are depicted in Fig. 3.1.
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a) θ = 0.3, µ = 0.3,
1 critical point
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b) θ = 0.3, µ ≈ 4.15,
2 critical point
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c) θ = 0.3, µ = 5,
3 critical point

Fig. 3.1.

For µ < e we have the relation in Fig. 3.1.(a). For µ > e we have the relation in Fig.
3.1.(c).

It is evident that for some values of parameters there is exactly one critical point and
for some values of µ and θ there are three points. As an intermediate state we have Fir.
3.1.(b) with exactly two critical points. Our goal is to clarify which values of parameters
correspond to 1, 2 or 3 critical points.

3.1 Linearized system

The linearized system around a possible critical point (x1, x2) is







u′ = −u + µe−e−µ(x2−θ)
−µ(x2−θ) · v,

v′ = µe−e−µ(x1−θ)
−µ(x1−θ) · u − v.

(6)
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Since x1 = x2 the system looks







u′ = −u + µe−e−µ(x−θ)
−µ(x−θ) · v,

v′ = µe−e−µ(x−θ)
−µ(x−θ) · u − v.

(7)

Therefore, by (4) and Lemma 1, the coordinate x of any critical point (x, x) satisfies

x = e−e−µ(x−θ)

,

− ln(x) = e−µ(x−θ).

Let consider a = µe−e−µ(x−Θ)
−µ(x−Θ) = µx(− ln(x)), then







u′ = −u + a · v,

v′ = a · u − v.

(8)

We get from x = e−e−µ(x−θ)
by logarithmation ln(− ln(x)) = −µ(x − θ). For θ and

x ∈ (0, 1) we get the formula (9)

θ = x +
1

µ
ln(− ln(x)).

(9)

The relation (9) is visualized in Fig. 3.2

0.0 0.5 1.0

x

2
4

6
8Μ

0.0

0.5

Fig. 3.2. The dependence of θ (for critical point (x, x)) of µ

Fig. 3.3 shows that for some µ and θ there are respectively one, two or three critical
points.

For different µ dependence θ of x is visualized below.
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for µ = 1
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b)The dependence of θ of x
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c)The dependence of θ of x

for µ = 7

Fig. 3.3.



27

Look at the second and the third of pictures in Fig. 3.3. There is an interval where
θ(x) is increasing. Let us make analysis of this.

One has that

θ′(x) = 1 +
1

µ

1

x ln x
(10)

and θ′(x) = 0 if
1

x ln x
= −µ. (11)

0.2 0.4 0.6 0.8 1.0
x

-14

-12

-10

-8

-6

-4

-2

1

x logHxL

Fig. 3.4. The graph of 1
x ln x

The function θ′(x) > 0 if 1
x lnx

> −µ. Denote solutions of the equation (11) x1(µ) and
x2(µ) respectively. Horizontal dashed line in Fig. 3.4 is for −µ and two vertical dashed
lines are for x1(µ) and x2(µ).

Consider

θ1(µ) = x1(µ) +
1

µ
ln(− ln(x1(µ)))

and

θ2(µ) = x2(µ) +
1

µ
ln(− ln(x2(µ))).

2 4 6 8 10
Μ

0.2

0.4

0.6

0.8

Q

Fig. 3.5. The graphs of θ1(µ) and θ2(µ) together.

The region Ω between θ1(µ) (lower branch) and θ2(µ) (upper branch) corresponds to
three critical points of the system, that is, for (µ, θ) ∈ Ω there are exactly three critical
points.

The characteristic equation for the linearized system (7) is

det(A − λI) =

∣

∣

∣

∣

−1 − λ a

a −1 − λ

∣

∣

∣

∣

=

∣

∣

∣

∣

−1 − λ µx(− ln(x))
µx(− ln(x)) −1 − λ

∣

∣

∣

∣

= (12)
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= (−1 − λ)2 − µ2x2(− ln(x))2 = 0

or λ = −1 ± a. Therefore λ1 = −1 − a is always negative and λ2 = −1 + a. There are
three possibilities for critical points:

1. λ2 < 0 then (x, x) is stable node;

2. λ2 = 0 then (x, x) is stable degenerate point;

3. λ2 > 0 then (x, x) is saddle point.
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a) µ = 2
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b) µ = e
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Λ

c) µ = 5

Fig. 3.6. Roots of characteristic equation (12), solid line is λ2 = −1 + µx(− ln(x)), dashed line

is λ1 = −1 − µx(− ln(x)), for a) µ ∈ (0, e), b) µ = e and c) µ ∈ (e,+∞)

The dependence of λ -s of x and x = e−e−µ(x−θ)
of θ (for µ given) is depicted in Fig.

3.6.
We observed that attractors for system (2) are either stable nodes or degenerate points

with λ1 < 0, λ2 = 0.

Proposition 1. The system (2) cannot have critical points of type focus.

Proof. It follows from (12), that λ = −1 ± µx(− ln(x)) and λ cannot be complex
number. �

Theorem 2. There are four cases for system (2):

1. There is exactly one critical point of the type stable node.

2. There is a unique critical point with λ1 < 0, λ2 = 0. It is degenerate stable critical

point.

3. There are exactly two critical points, one of them is stable node, another one is

degenerate stable critical point.

4. There are exactly three critical points. Side critical points are stable nodes, middle

point is a saddle.
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Fig. 3.7. Visualization of Theorem 1

Example 1. Let consider µ = 3 and θ = 0.3. There are respectively one critical point

(0.8, 0.8). The phase portrait of system (3) for one critical point is
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Fig. 3.8. Critical point is a stable node (λ1 < 0, λ2 < 0)
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Example 2. Let consider µ = 4.15 and θ = 0.3. There are respectively two critical

points (0.93, 0.93) and (0.11, 0.11). The phase portrait of system (3) for two critical points

is

0.0 0.2 0.4 0.6 0.8 1.0
x0.0

0.2
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0.8

1.0

y

Fig. 3.9. First point is degenerate stable critical point, another one is stable node

Example 3. Let consider µ = 5 and θ = 0.3. There are respectively three critical

points (0.02, 0.02), (0.21, 0.21), (0.96, 0.96). The phase portrait of system (3) for three

critical points is
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Fig. 3.10. Side critical points are stable nodes, middle point is a saddle
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4 Summing up the results

We have defined the region Ω in (µ, θ)-plane with the properties:

• if (µ, θ) ∈ Ω then there are exactly three critical points with the properties - two
side critical points are stable nodes, middle (central) point is a saddle;

• if (µ, θ) ∈ ∂Ω then there are exactly two critical points with the properties - the
first critical point is stable node, the second is degenerate point (λ1 < 0, λ2 = 0);

• if (µ, θ) ∈ Q \ Ω then there is exactly one critical point with the properties - it is a
stable node;

• the common point of lower and upper branches of ∂Ω corresponds to a unique critical
point with λ1 < 0, λ2 = 0, depictedin Fig. 3.7 [2].
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Description of critical points
for some system arising in applications

Diana Ogorelova

Summary. 3D-model of gene regulation network is considered where the sigmoidal
function is the Gompertz function. The description of attractors is obtained depending
on parameters.

MSC: 34C10, 34D45, 92C42

1 Introduction

Various models of different type networks can be described by dynamical system





x′ = f1(x, y, z, µ1, θ1, w11, w12, w13)− γ1x,
y′ = f2(x, y, z, µ2, θ2, w21, w22, w23)− γ2y,
z′ = f3(x, y, z, µ3, θ3, w31, w32, w33)− γ3z,

(1)

where fi are sigmoidal functions. This system reflects the interrelation between nodes
of a network. Nodes are denoted xi. In majority of papers on the subject the logistic
sigmoidal function f(z) = 1

1+e−µz was used. As a sigmoidal function we have chosen the
Gompertz function

f(z) = e−e−µz

,

where µ is a parameter.
Systems of the form (1) are believed to model telecommunication ([7], [8], [9]) and

genetic regulatory networks ([1]). The review articles [2], [6], [10] can be used by interested
reader to explore the topic.
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2 Preliminary result

Three-component gene regulatory networks are described by the differential system (1)
where f is a sigmoidal function and





f1 = exp(− exp[−µ1(w11x + w12y + w13z − θ1)]),
f2 = exp(− exp[−µ2(w21x + w22y + w23z − θ2)]),
f3 = exp(− exp[−µ3(w31x + w32y + w33z − θ3)]).

(2)

We assume that µ1, µ2 and µ3 are positive, as well as γ1, γ2 and γ3.

First consider the nullclines of the system (1) which are given by





γ1x = exp(− exp[−µ1(w11x + w12y + w13z − θ1)]),
γ2y = exp(− exp[−µ2(w21x + w22y + w23z − θ2)]),
γ3z = exp(− exp[−µ3(w31x + w32y + w33z − θ3)]).

(3)

It is supposed that Gompertz function is dependent also on a parameter µ that reg-
ulates steepness of the graph of f . We wish to state general properties of the system
(3).

Critical points of this system are solutions of





0 = exp(− exp[−µ1(w11x + w12y + w13z − θ1)])− γ1x,
0 = exp(− exp[−µ2(w21x + w22y + w23z − θ2)])− γ2y,
0 = exp(− exp[−µ3(w31x + w32y + w33z − θ3)])− γ3z.

(4)

In order to detect the type of the critical point consider the linearized system





u′ = (−γ1 + g1µ1w11)u + g1µ1w12v + g1µ1w13w,
v′ = g2µ2w21u + (−γ2 + g2µ2w22)v + g2µ2w23w,
w′ = g3µ3w31u + g3µ3w32v + (−γ3 + g3µ3w33)w,

(5)

where




g1 = exp(− exp[−µ1(w11x + w12y + w13z − θ1)]− µ1(w11x + w12y + w13z − θ1),
g2 = exp(− exp[−µ2(w21x + w22y + w23z − θ2)]− µ2(w21x + w22y + w23z − θ2),
g3 = exp(− exp[−µ1(w31x + w32y + w33z − θ3)]− µ3(w31x + w32y + w33z − θ3)

(6)

and x, y, z are coordinates of a critical point. The characteristic equation for the linearized
system (5) is

det(A− λI) =

∣∣∣∣∣∣

(−γ1 + g1µ1w11)− λ g1µ1w12 g1µ1w13

g2µ2w21 (−γ2 + g2µ2w22)− λ g2µ2w23

g3µ3w31 g3µ3w32 (−γ3 + g3µ3w33)− λ

∣∣∣∣∣∣
=

(7)
= −λ3 + Dλ2 + Eλ + F = 0

where
D = −γ1 − γ2 − γ3 + g1µ1w11 + g2µ2w22 + g3µ3w33, (8)
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E = −γ1γ2 − γ1γ3 − γ2γ3 + γ1g2µ2w22 + γ1g3µ3w33

+ γ2g1µ1w11 + γ2g3µ3w33 + γ3g1µ1w11 + γ3g2µ2w22−
− g1µ1w11g2µ2w22 − g1µ1w11g3µ3w33 − g2µ2w22g3µ3w33+

+ g1µ1w12g2µ2w21 + g1µ1w13g3µ3w31 + g2µ2w23g3µ3w32,

(9)

F = −γ1γ2γ3 + γ1γ3g2µ2w22 + γ1γ2g3µ3w33 + γ2γ3g1µ1w11−
− γ1g2µ2w22g3µ3w33 + γ1g2µ2w23g3µ3w32 − γ2g1µ1w11g3µ3w33+

+ γ2g1µ1w13g3µ3w31 − γ3g1µ1w11g2µ2w22 + γ3g1µ1w12g2µ2w21+

+ g1µ1w11g2µ2w22g3µ3w33 − g1µ1w11g2µ2w23g3µ3w32+

+ g1µ1w13g2µ2w21g3µ3w32 − g1µ1w12g2µ2w21g3µ3w33+

+ g1µ1w12g2µ2w23g3µ3w31 − g1µ1w13g2µ2w22g3µ3w31.

(10)

We consider the three possibilities for critical points:

1. λ1,2,3 < 0 then (x, y, z) is stable node;

2. λ1 < 0, λ2 > 0, λ3 ∈ R then (x, y, z) is saddle point;

3. λ1 ∈ R, λ2,3 = α± iβ then (x, y, z) is focus:

• λ1 < 0 and α < 0 then (x, y, z) is stable focus;

• λ1 ∈ R and α > 0 then (x, y, z) is unstable focus.

2.1 A particular case

We are interested also in a particular case where wii = 0, i = 1, 2, 3. Then formulas (8),
(9), (10) take the form

D∗ = −γ1 − γ2 − γ3, (11)

E∗ = −γ1γ2 − γ1γ3 − γ2γ3 + g1µ1w12g2µ2w21 + g1µ1w13g3µ3w31 + g2µ2w23g3µ3w32,

(12)

F∗ = −γ1γ2γ3 + γ1g2µ2w23g3µ3w32 + γ2g1µ1w13g3µ3w31 + γ3g1µ1w12g2µ2w21+

+ g1µ1w13g2µ2w21g3µ3w32 + g1µ1w12g2µ2w23g3µ3w31.

(13)
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2.2 Reminder on cubic equations

Consider the cubic equation
λ3 − Eλ− F = 0. (14)

Any general cubic equation (with the quadratic term) can be reduced to the above form.
The Cardano formula for the roots of (14) has the form:

λ =
3

√
F

2
+

√
(−F )2

4
+

(−E)3

27
+

3

√
F

2
−

√
(−F )2

4
+

(−E)3

27
. (15)

In this formula one must choose, for each of the three values of the cube root

α =
3

√
F

2
+

√
(−F )2

4
+

(−E)3

27
, (16)

that value of the cube root

β =
3

√
F

2
−

√
(−F )2

4
+

(−E)3

27
, (17)

for which the relation αβ = E
3

holds (such a value of β always exists). In the Cardano
formula, E and F are arbitrary complex numbers. In the case of real coefficients E and F ,
the property of the roots being real or imaginary depends on the sign of the discriminant
of the equation,

D = −27(−F )2 − 4(−E)3 = −108

(
(−F )2

4
+

(−E)3

27

)
. (18)

When D > 0 all three roots are real and distinct. However, according to Cardano’s
formula, the roots are expressed in terms of cube roots of imaginary quantities. Although
in this case both the coefficients and the roots are real, the roots cannot be expressed in
terms of the coefficients by means of radicals of real numbers; for this reason, the above
case is called irreducible.

When D = 0, all roots are real; when E and F are both non-zero, there is one double
and one single root; and when E and F are both zero, there is one triple root.

When D < 0, all three roots are distinct, one of them being a real number and the
other two — conjugate complex numbers.

3 Examples

Consider a number of examples illustrating (and confirming) our analysis.

1-st Example. Set the parameters to

µ1 = 7, µ2 = 7, µ3 = 13, θ1 = 0.5, θ2 = 0.3, θ3 = 0.7, γ1 = 0.62, γ2 = 0.42, γ3 = 0.1,

w11 = 0, w12 = 1, w13 = −1, w21 = 1, w22 = 0, w23 = −1, w31 = 1, w32 = 0.1, w33 = 0.
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The system of ODE then takes the form





x′ = exp(− exp[−7(y − z − 0.5)])− 0.62x,
y′ = exp(− exp[−7(x− z − 0.3)])− 0.42y,
z′ = exp(− exp[−13(x + 0.1y − 0.7)])− 0.1z.

(19)

In order to detect the type of the first critical point consider the linearized system





u′ = −0.62u + 1.11983 · 10−12v − 1.11983 · 10−12w,
v′ = 0.01624u− 0.42v − 0.01624w,
w′ = 1.77831 · 10−3881u + 1.77831 · 10−3882v − 0.1w.

(20)

The characteristic equation for the linearized system (20) is

−λ3 − 1.14λ2 − 0.3644λ− 0.02604 = 0

The first critical point is (7.7448 · 10−15; 0.000676438; 0): Values of λ for this critical
point is 




λ1 = −0.62,
λ2 = −0.42,
λ3 = −0.1.

(21)

In this example the 3D system of the (1) has one critical point (stable node in 2D-subspace
and a attraction in the remaining).

In order to detect the type of the second critical point consider the linearized system





u′ = −0.62u + 2.55801v − 2.55801w,
v′ = 2.53905u− 0.42v − 2.53905w,
w′ = 1.19739u + 0.119739v − 0.1w.

(22)

The characteristic equation for the linearized system (22) is

−λ3 − 1.14λ2 + 2.76355λ− 9.4061 = 0

The second critical point is (0.526218; 0.733372; 0.249572): Values of λ for this critical
point is 




λ1 = −3.05369,
λ2 = 0.956843− 1.47129i,
λ3 = 0.956843 + 1.47129i.

(23)

In this example the 3D system of the (1) has another critical point (unstable focus).

2-nd Example. Set the parameters to Consider a number of examples illustrating (and
confirming) our analysis. For parameters

µ1 = 0.3, µ2 = 3, µ3 = 0.8, θ1 = 0.3, θ2 = 0.01, θ3 = 1, γ1 = 1, γ2 = 1, γ3 = 1,

w11 = 0, w12 = −5, w13 = 0, w21 = 10, w22 = 0, w23 = 0, w31 = −3, w32 = 0, w33 = 0.
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The system of ODE then takes the form





x′ = exp(− exp[−0.3(−5y − 0.5)])− x,
y′ = exp(− exp[−3(10x− 0.01)])− y,
z′ = exp(− exp[−0.8(−3x− 1)])− z.

(24)

In order to detect the type of the critical point consider the linearized system





u′ = −u− 0.189317v,
v′ = 6.98811u− v,
w′ = −0.509481u− w.

(25)

The characteristic equation for the linearized system (25) is

−λ3 − 3λ2 − 4.32297λ− 2.32297 = 0

The critical point is (0.0388611; 0.725311; 0.0868913): Values of λ for this critical point
is 




λ1 = −1,
λ2 = −1− 1.1502i,
λ3 = −1 + 1.1502i.

(26)

In this example the 3D system of the (1) has one critical point (stable focus).



56

References

[1] V. Acary, H. de Jong, B. Brogliato. Numerical simulation of piecewise-linear models
of gene regulatory networks using complementarity system. Physica D: Nonlinear
Phenomena Volume 269, 15 February 2014, Pages 103-119.

[2] F. M. Alakwaa, Modeling of Gene Regulatory Networks: A Literature Review, Jour-
nal of Computational Systems Biology, 1(1):67-103, 2002.

[3] D.K. Arrowsmith and C.M. Place. Dynamical Systems. Differential equations, maps
and haotic behavior. Chapman and Hall/CRC, London (1992).

[4] S. Atslega, D. Finaskins, F. Sadyrbaev. On a Planar Dynamical System Arising in
the Network Control Theory, Mathematical Modelling and Analysis, 21 (2016), N 3,
385 - 398.

[5] E. Brokan and F. Zh. Sadyrbaev. On attractors in gene regulatory systems, AIP
Conference Proceedings 1809, 020010 (2017): Proc. of the 6th International Advances
In Applied Physics And Materials Science Congress & Exhibition (APMAS 2016),
1-3 June 2016, Istanbul, Turkey,; doi: 10.1063/1.4975425

[6] H. D. Jong, Modeling and Simulation of Genetic Regulatory Systems: A Literature
Review. Journal of computational biology, 9, 67 – 103 (2002).

[7] Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Ro-
bust virtual network topology control based on attractor selection,” in Proceedings
of ONDM, pp. 123 – 128, Feb. 2009.

[8] Y. Koizumi et al. Adaptive Virtual Network Topology Control Based on Attractor
Selection. Journal of Lightwave Technology (ISSN : 0733-8724), Vol.28 (06/2010),
Issue 11, pp. 1720 - 1731 DOI:10.1109/JLT.2010.2048412

[9] Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Ap-
plication of attractor selection to adaptive virtual network topology control,” in Pro-
ceedings of BIONETICS, pp. 1 -– 8, Nov. 2008.

[10] N. Vijesh, S. K. Chakrabarti, J. Sreekumar, Modeling of gene regulatory networks:
A review, J. Biomedical Science and Engineering, 6:223-231, 2013.

D. Ogorelova. Gomperca funkcija gēnu regulēšanas sistēmas model̄ı.
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Abstract: The system of two the first order ordinary differential equations arising in the gene regulatory networks theory is 
studied. The structure of attractors for this system is described for three important behavioral cases: activation, inhibition, 
mixed activation-inhibition. The geometrical approach combined with the vector field analysis allows treating the problem 
in full generality. A number of propositions are stated and the proof is geometrical, avoiding complex analytic. Although 
not all the possible cases are considered, the instructions are given what to do in any particular situation.
Keywords: gene regulatory networks, control, attractors

1. Introduction
Theory of genetic regulatory networks (GRN in short) is in the center of biomathematics. There are several ways of 

modelling GRN, for instance, boolean algebras, graph theory and more, [1-3]. Modelling in terms of dynamical systems 
allows to follow evolution of GRN. The system we wish to study, appears in multiple contexts[4-6] in vectorial form

( ) .i ij j i ix f w x xθ′ = ∑ - - 					     		        (1)

This system describes interrelation between elements (genes) of a gene network. We omit the mechanism of this 
interrelation (one can consult [3-5]) and focus on the mathematical aspect. The function f (z) in this model is a continuous 
bounded monotonically increasing function (that is called sigmoidal regulatory function). Matrix W = (wij) consists 
of entries describing the relation between nodes of the networks. There are various functions f possessing the desired 

properties. For instance, the function 1( )
1 uzf z

e-
=

+
 meets the requirements. The argument z is substituted by z = Σwijxj 

- θ and it represents the input on a gene with threshold θ for increasing xi . The function f (z) is a sigmoidal (monotone 
and bounded) function and 2 × 2 matrix Wij consists of entries that take values from the set {-1, 0, 1}. The decisive role 
in the evolution of a GRN play attracting sets. The structure of attracting sets of system (1) is studied. The ability of 
controlling the network by change of adjustable parameters is in a focus. Let us recall the citation from [5]: “For a given 
set of parameters, the multiple attractors (for example, stable steady states) and the corresponding basins are fixed. In the 
absence of stochasticity, for a given initial condition, the system will approach one of the attractors. Each attractor has 
specific biological significance, which can be regarded as either desired or undesired, depending on the particular function 
of interest. Suppose, without any control, the system is in an undesired attractor or is in its basin of attraction. The question 
is how to steer the system from the undesired state to a desired state.” The purpose of our article is to show and explain in 
geometrical and analytical terms, how to do this for system (2).

2. Problem
Two-component gene regulatory networks, where the stochasticity terms are neglected, are described[7] by the 

differential system

Copyright ©2020 F. Sadyrbaev, et al.
DOI: https://doi.org/10.37256/cm.152020538
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1
1 11 1 12 2 1 1

2
2 21 1 22 2 2 2

( ( )) ,

( ( )) ,

dx f w x w x x
dt
dx f w x w x x
dt

µ θ

µ θ

 = - + - -

 = - + - -
 			   		        (2)

where f is a sigmoidal function.
Definition 1. A function is called sigmoidal if the following is satisfied.
1. f (x) monotonically increases from 0 to 1, x ∈ R;
2. It has exactly one inflection point.
Two typical examples of sigmoidal functions more often used in modelling GRN, are the Gompertz function f (z) = 

e-μ(z - θ) and the logistic function f (z) = 1/(1 + e-μ(z - θ)). The argument z can be complicated. The 2D system, where f is the 
Gompertz function, is

( )1 11 1 12 2 1

( )2 21 1 22 2 2

1
1

2
2

,

.

w x w x

w x w x

e

e

dx
e x

dt
dx

e x
dt

µ θ

µ θ

- + -

- + -

-

-

 = -

 = -
 				    		        (3)

GRN model in this form was studied in [8-9]. Since we wish to consider systems with any sigmoidal function, we will 
use the form (2).

1.0

0.8

0.6

0.4

0.2

-4 -2 2 4 6

Figure 1. Red: μ = θ = 1, Blue: μ = θ = 2, Green: μ = θ = 4,  f  is Gompertz function

Since we focus on the inhibition case, we assume that w12 and w21 are negative. The diagonal elements w11 and w22 
are set to zero, unless otherwise stated.

Problem: Describe possible attracting sets for the inhibition case.

3. Facts
Let us list the main facts about 2D-system (2).
1. The left sides of (2) are zeros on the nullclines[10] which are given as

1 1 11 1 12 2 1

2 2 21 1 22 2 2

( ( )),
( ( )).

x f w x w x
x f w x w x

µ θ
µ θ

= - + -
 = - + - 				    		        (4)

2. Equilibria (critical points) of system (2) are solutions of the system (4).
3. For w11 and w21 negative, and w11 = w22 = 0 there are at most three equilibria; the minimal number of equilibria is 

one. This follows from the S-shape of both nullclines. If w11 and/or w22 are not zero, then the nullclines may be Z-shaped 
and the number of critical points can be up to nine.

4. The vector field (P(x1, x2), Q(x1, x2)),
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P(x1, x2) := f (-μ1(w11x1 + w12x2 - θ1)) - x1 ,

Q(x1, x2) := f (-μ2(w21x1 + w22x2 - θ2)) - x2 ,

is directed inward on the border of the rectangle D = {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1} and, therefore, all trajectories of system (2), 
which start at the border ∂D, enter the region D, and no trajectory escapes. In other words, the region D is invariant under 
the trajectories of system (2).

5. The nullclines (4) can intersect only in the interior of D. Therefore all equilibria are in the interior of D.
6. If w12 and w21 are non-zero, and w11 = w22 = 0, and the nullclines (4) intersect transversally, then two cases are 

possible: 
a) there is one equilibrium and it is attractive;
b) there are three equilibria and two of them are stable nodes and one is a saddle point.
7. If nullclines (4) are tangent at some point, then this point is degenerate critical point with one characteristic number 

λ = 0.
8. No periodic solutions (closed trajectories) exist in system (2) for w12 and w21 negative, and w11 = w22 = 0.
9. In the case 6a (one stable equilibrium) any trajectory that starts in D, tends to this equilibrium. The vector field (P(x1, 

x2), Q(x1, x2)) is directed then to a unique critical point.
10. In the case 6b (two stable equilibria and a saddle point) there are subsets D1 ⊂ D and D2 ⊂ D such that if the 

trajectory starts in D1, it goes to the first stable equilibrium, if the trajectory starts in D2, it goes to the second stable 
equilibrium.

Some of these facts were known and some were proved in [8-9, 11-14]. Similar technique was used in the works [15-
17].

4. Basins of attraction
Let us look at the below pictures Figure 2a to Figure 2c. The first one (Figure 2a) shows two nullclines of the system 

and three critical points. The middle point is a saddle, both side points are stable equilibria. This can be confirmed by the 
vector field analysis and the exploration of the respective linearized system. We omit these steps. Each of these equilibria 
has a basin of attraction, denoted by D1 and D2. Basins of attractions are separated by separatrixes of the saddle point. Any 
trajectory starting at any time moment at a point in D1, will tend eventually to an upper stable equilibrium. Similarly, any 
trajectory starting at a point in D2, will tend to a lower stable equilibrium.

Consider now the problem. Imagine a trajectory started at a point in D1. Then its future is predefined, it will go to an 
upper equilibrium. By some reason (which will be explained later) we need the trajectory to go to a lower equilibrium. We 
are able to adjust some parameters in system (2), say, θ1 and/or θ2.

Tuning the first nullcline can be done by changing the parameter θ1. The result is seen in Figure 2d and Figure 2e. The 
initial state is seen in Figure 2a. There are two attractors at the side critical points. By changing θ1 from 0.02 to -1.5 we 
eliminate the upper attractor, while the second (lower) attractor remains. The trajectory continues, as time increases, to the 
unique attractor. So by a single operation the trajectory can be redirected to the lower equilibrium.

By changing θ1 from 0.02 to 0.35 the opposite result can be achieved. The lower attractor is eliminated and the upper 
one remains. So trajectories that were tending to the lower attractor are redirected to the upper one.

5. Normal and undesired states of GRN
In the work [5] an example of realistic GRN was discussed. The GRN considered corresponds to a kind of cancer, 

where cancerous states are identified with “undesired” attractors. If the current system states, that is, the vector x(t) is in the 
basin of attraction of “undesired” attractor, the system (which corresponds to a living organism) will tend to an “undesired” 
attractor with the negative consequences. The problem is, using adjustable parameters, to redirect the vector x(t) from 
“undesired” attractor to a normal one. Mathematically (in a model) this can be (sometimes) done by skillfully tuning the 
system. This is what we did in the preceding section to the two-dimensional system. In the system being considered in [5] 
the dimensionality of the considered system is not too large (60 nodes, of which three nodes only were attractive). It was 
mentioned in [5], that also reverse process is available, that is, driving a system into opposite direction. This is another 
aspect of the problem. We have shown, considering our simple 2D system, that, operating by parameters θ, we can control 
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the system.
In real situations, management and pertirbation of these parameters should be left to biologists and medics.
We believe, that in a similar manner systems of higher dimensions can be controlled.

6. Examples
In the below examples μ1 = μ2 = 3.0. The sigmoidal function is the Gompertz one, (3). The numerical data for 

illustrations are chosen arbitrarily to show the desired behavior of solutions.
Set θ1 = 0.02 and change θ2. Initially θ2 = 0.03 and the nullclines are depicted in Figure 2a. Increasing θ2 eliminates 

the upper stable equilibrium and redirects all the trajectories to the lower equilibrium as shown in Figure 2a. Increasing θ2 
eliminates the upper stable equilibrium and redirects all the trajectories to the lower equilibrium as shown in Figure 2b. If 
the upper attractor is idendified with the normal system state, and trajectories should be redirected to the upper equilibrium, 
the parameter θ2 needs to decrease. This is shown in Figure 2c.

The same results can be obtained by changing the second adjustable parameter, θ1. The needed operations are 
explained and illustrated by Figure 2d and Figure 2e.
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Figure 2. Nullclines for system (3)

It is to be noted, that passage from the initial state (Figure 2a) to other states with a unique equilibrium is through the 
intermediate “touch” state, when two isoclines are touching each other. There are an “upper” touch and a “lower” touch, 
leading to a single equilibrium. The “upper” touch is shown in Figure 2f.

7. Analytics
Consider the inhibition case, where the modelling system is



Volume 1 Issue 5|2020| 397 Contemporary Mathematics

1
1 1 1

2
2 1 2

2

2

( ( )) ,

( ( )) ,

dx
f x

dt
dx

f x x
d

x

t

α

β

µ θ

µ θ

 = - -

 = - -
 					    		        (5)

α and β are negative, f (z) is a sigmoidal function. Suppose that nullclines are located as shown in Figure 2a. The 
parameters μ1, μ2, θ1, θ2, α, β are fixed. There are three cross-points, respectively p1, p2, p3 (from upper left to lower right). 
Two side points, p1 and p3, are stable nodes and the middle point p2 is a saddle.

Our goal is to control this system, redirecting trajectories to a desired (normal) stable node. For this, we will change 
θ1. Let p3 be a normal attracting state. Let θ1upper be the value, corresponding to the upper touch point. In the example in 
Section 6 θ1upper = -1.11 (Figure 2f) and the current value θ1 = 0.02. Let θ1lower be the value of θ1, corresponding to the 
lower touch point (Figure 3a). The current value of θ1, by our assumption, is between θ1upper and θ1lower . For θ1 values 
greater than θ1lower the upper attractor remains and all the trajectories tend to it (Figure 3b). For θ1 values less than θ1upper 
the upper attractor remains and all the trajectories tend to it (Figure 3c).
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Figure 3. Moving the first nullcline (red)

The nullclines are defined by

1 1 1

2 2 1

2

2

( ( )),
( ( )),

x f
x f x

xµ θ
µ θ

α
β

= -
 = - 				    			         (6)

It follows that

1
1

2
21

2
( ( )),

dx
f

dx x
xαµ θ∂

= -
∂

2
2

1
12

1
( ( )).

dx
f

dx x
xβµ θ∂

= -
∂

At a point, where two nullclines are touching, the relation

1 212
2 1

2 11 ( ( )) ( ( ))x xf f
x x

µ θ µα θβ∂ ∂
= - -
∂ ∂ 			   		        (7)

must be satisfied.
For given f, μ1, μ2, α, β, θ2, the values of θ1upper and θ1lower can be found solving the system (6), (7).
Remark. The system can be managed also changing the parameter θ2 instead of θ1. For the touching points of 
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nullclines then the values θ2left and θ2right should be used.

8. Symmetric case
Consider the particular case

2

1

1
2 1 1( )

2
1 2 2( )

1( ( )) ,
1

1( ( )) ,
1

x

x

dx
f x x x

dt e
dx

f x x x
dt e

µ θ

µ θ

µ θ

µ θ

- - -

- - -

 = - - - = - +

 = - - - = -
 + 			   	       (8)

where f is a logistic function and μ1 = μ2 and θ1 = θ2. This corresponds to both elements of GRN acting symmetrically. 
Mathematically this case can be entirely analyzed.

The system

2 1

1

1

2

2

2 11 ( ( )) ( ( ))

( ( )),
( ( ))

f f
x x

x f x
x x

x x

f

µ θ µ θ

µ θ
µ θ

-
∂ ∂ = - - - ∂ ∂ = -

-=
-

 -
 				    	       (9)

defines the touching points of nullclines.
For instance, set µ = 10 and let θ be free. Due to symmetry in system (8), a unique equilibrium always exists on the 

bisectrix and both touch points are also on the bisecrtrix (Figure 4a and Figure 4b). For the intermediate value θ = -0.5 the 
nullclines are depicted in Figure 4c.
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Figure 4. Nullclines for system (8)

The coordinate x of a unique critical point of the form (x, x) satisfies the relation x = f (µ(-x - θ)). Then

1 1log( 1).x
x

θ
µ

= - + -
				    			         (10)

The characteristic numbers λ1,2 = -1 ± µx(1 - x) can be obtained by linearizing system (8) around the equilibrium (x, x). 
Elementary analysis of λ2 = -1 + µx(1 - x) shows that λ2 can be positive only for x ∈ (x1, x2), where

2 2

1 2
4 41 1: ,  : + .

2 2
(

2
) )

2
(x x

µ µ µ
µ

µ µ
µ

µ- -
= - =

	 			         (11)



Volume 1 Issue 5|2020| 399 Contemporary Mathematics

We can obtain, following the arguments in [14] and using (10) and (11), the figure depicted in Figure 5.
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Figure 5. The bifurcation curve θ(µ)

This figure is defined by two branches

11
1

1 1( ) ( ) log( 1),
( )

: x
x

θ µ µ
µ µ

+ -= -

22
2

1 1( ) ( ) log( 1),
( )

: x
x

θ µ µ
µ µ

+ -= -
					     	       (12)

where x1 and x2 are defined in (11).

9. Conclusions
Typical behavior of solutions in an inhibition models of GRN is described. The possibility of managing and 

controlling of 2D inhibition GRN systems is emphasized and analyzed in terms of the phase plane. It is shown how to 
eliminate unwanted attractors and redirect the trajectories of the system in the right direction by changing the adjustable 
parameters θ. The proposed method is easy to implement, geometrically check, and allows for an accurate mathematical 
description. This approach is a perspective for studying and managing multi-dimensional systems.
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ФУНКЦИЯ ГОМПЕРЦА

В МОДЕЛИ ГЕННЫХ РЕГУЛЯТОРНЫХ СЕТЕЙ

c© 2021 г. Д. А. ОГОРЕЛОВА, Ф. Ж. САДЫРБАЕВ

Аннотация. Исследуется сетевая модель (включающих генные регуляторные сети), состоящая
из системы двух обыкновенных дифференциальных уравнений. Данная система содержит ряд па-
раметров и зависит от регуляторной матрицы, описывающей взаимодействия в данной двухком-
понентной сети. Рассматривается вопрос о притягивающих множествах данной системы, которые
меняются в зависимости от параметров и элементов регуляторной матрицы. Рассмотрение носит
в основном геометрический характер, что позволяет выявить и классифицировать возможные
взаимодействия в сети. В системе дифференциальных уравнений присутствует сигмоидальная
функция, позволяющая учесть особенности ответной реакции сети на внешние воздействия. В ка-
честве сигмоидальной функции выбрана функция Гомперца, что позволяет сравнить результаты
с аналогичными результатами для моделей двухкомпонентных сетей, в которых используется
логистическая сигмоидальная функция.

Ключевые слова: генная регулятивная сеть, фазовый портрет, качественный анализ, числен-
ный анализ.

GOMPERTZ FUNCTION

IN THE MODEL OF GENE REGULATORY NETWORKS

c© 2021 D. A. OGORELOVA, F. Zh. SADYRBAEV

Abstract. We examine a network model (including gene regulatory networks), which consists of a
system of two ordinary differential equations. This system contains several parameters and depends
on the regulatory matrix, which describes interactions in this two-component network. We consider
attracting sets of the system, which vary depending on the parameters and elements of the regulatory
matrix. Our considerations are of geometric nature, which allows us to identify and classify possible
interactions in the network. The system of differential equations contains a sigmoidal function, which
makes it possible to take into account peculiarities of the network’s response to external influences.
The Gompertz function was chosen as the sigmoidal function, which allows us to compare the results
with similar results for models of two-component networks based on the logistic sigmoidal function.

Keywords and phrases: gene regulatory network, phase portrait, qualitative analysis, numerical
analysis.

AMS Subject Classification: 34Cxx

1. Постановка задачи. Двухэлементная генная регуляторная сеть (ГРС) описывается диф-
ференциальной системой {

x′1 = f(w11x1 + w12x2 − θ1)− x1,
x′2 = f(w21x1 + w22x2 − θ2)− x2,

(1)

где f(x) — сигмоидальная функция. Функция f(x) называется сигмоидальной, если она монотон-
но строго возрастает от нуля до единицы при возрастании аргумента x от −∞ до +∞ и имеет
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ровно одну точку перегиба. Примером сигмоидальной функции является логистическая функция
f(z) = (1+e−µz)−1. Эта функция использовалась в математических моделях сетей в [3,4,6]. Дру-
гим примером сигмоидальной функции является функция Гомперца (Gompertz) f(z) = e−e

−µz ,
которую мы используем в данной статье. График этой функции приведен на рис. 1.

-2 -1 1 2 x

0.2

0.4

0.6

0.8

1.0

f HxL

Рис. 1. Функция Гомперца.

Система, которую мы рассматриваем в данной статье, имеет вид
dx1
dt

= e−e
−µ(w11x1+w12x2−θ1) − x1,

dx2
dt

= e−e
−µ(w21x1+w22x2−θ2) − x2,

(2)

где µ > 0 и θ—параметры. Наша цель — классифицировать возможные случаи и описать аттрак-
торы данной системы.

2. Взаимодействие. Типы взаимодействия в сети описываются регуляторной матрицей

W =

(
w11 w12

w21 w22

)
.

Элементы матрицы могут принимать различные значения. Известны четыре основных типа взаи-
модействия. В описании этих типов участвуют изоклины нуля системы (2), которые описываются
далее.

A: Активация: регуляторная матрица имеет структуру

W =

(
∗ +
+ ∗

)
,

где w12 и w21 положительны, а элементы w11 и w22 могут принимать любые значения (это
отмечается звездочками). Запись {{+,+}{+,+}}, например, означает матрицу W со всеми
положительными элементами.

B: Ингибиция: регуляторная матрица имеет вид

W =

(
∗ −
− ∗

)
,

где элементы w12 и w21 отрицательны, а элементы w11 и w22 могут принимать произвольные
значения.

C: Активация-ингибиция: регуляторная матрица имеет вид

W =

(
∗ +
− ∗

)
,

где элемент w12 положителен, элемент w21 отрицателен, а элементы w11 и w22 могут при-
нимать любые значения.
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Рис. 2. Визуализация всех случаев активации:
(a) {{+,+}{+,+}}; (b) {{−,+}{+,+}}; (c) {{+,+}{+,−}}; (d) {{−,+}{+,−}}.
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Рис. 3. Визуализация всех случаев ингибиции:
(a) {{−,−}{−,−}}; (b) {{+,−}{−,−}}; (c) {{−,−}{−,+}}; (d) {{+,−}{−,+}}.
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Рис. 4. Визуализация всех случаев типа активация-ингибиция:
(a) {{+,+}{−,+}}; (b) {{−,+}{−,+}}; (c) {{+,+}{−,−}}; (d) {{−,+}{−,−}}.
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Рис. 5. Визуализация всех случаев типа ингибиция-активация:
(a) {{+,−}{+,+}}; (b) {{−,−}{+,+}}; (c) {{+,−}{+,−}}; (d) {{−,−}{+,−}}.
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D: Ингибиция-активация: регуляторная матрица имеет вид

W =

(
∗ −
+ ∗

)
,

где элемент w12 отрицателен, элемент w21 положителен, а элементы w11 и w22 могут при-
нимать любые значения.

При наличии ненулевых элементов на главной диагонали матрицы W изоклины нуля могут
принимать Z-образную форму. Параметр µ влияет на остроту углов в фигуре Z. Параметр θ
регулирует сдвиг графика сигмоидальной функции, а соотношение величин элементов wij влияет
на наклон сегментов графика (Z-образной фигуры).

Предложение 1. Все критические точки системы (2) находятся в единичном квадрате
(0, 1)× (0, 1) и множество критических точек непусто.

Справедливость утверждения вытекает из вида изоклин и свойств сигмоидальной функции.

Предложение 2. Критические точки, являющиеся точками касания изоклин нуля, вырож-
дены, т.е. одно из характеристических чисел λ равно нулю.

Это предложение может быть доказано (см. [9]) рассмотрением соответствующей линеаризо-
ванной системы и соответствующего характеристического уравнения. Отметим, что изоклины
нуля в силу определяющих их уравнений гладкие и не имеют сингулярностей, несмотря на Z-
образную форму.

Далее рассматриваются все типичные случаи расположения критических точек, приводятся
характеристики критических точек. Мы также рассматриваем численные примеры и соответ-
ствующие фазовые портреты.

2.1. Случай A: Активация. Рассмотрим случай максимального числа критических точек (по-
ложений равновесия). Пусть дана регуляторная матрица

W =

(
10 5
2 3

)
.

Система (2) принимает вид 
dx1
dt

= e−e
−µ(10x1+5x2−θ1) − x1,

dx2
dt

= e−e
−µ(2x1+3x2−θ2) − x2.

(3)

Функции в правой части зависят от параметра µ, который регулирует остроту углов в графиках
изоклин нуля. Критические точки находятся из системыx1 = e−e

−µ(10x1+5x2−θ1)
,

x2 = e−e
−µ(2x1+3x2−θ2)

.
(4)

Для выбранных значений параметров изоклины нуля изображены на рис. 6(a).
При анализе критических точек получены следующие результаты:
(i) тип критической точки (0; 0) с меткой 1 — устойчивый узел при характеристических числах

(λ1 = −1, λ2 = −1);
(ii) тип критической точки (0,6; 0) с меткой 2 — седло при (λ1 = −1, λ2 = 59,96);
(iii) тип критической точки (1; 0) с меткой 3 — устойчивый узел при (λ1 = −1, λ2 = −1);
(iv) тип критической точки (1; 0,16) с меткой 4 — седло при (λ1 = −1, λ2 = 16,41);
(v) тип критической точки (0,26; 0,67) с меткой 5 — неустойчивый узел при (λ1 = 75,3, λ2 = 8,8);
(vi) тип критической точки (0; 0,87) с меткой 6 — седло при (λ1 = −1, λ2 = 6,5);
(vii) тип критической точки (0; 0,99) с меткой 7 — устойчивый узел при (λ1 = −1, λ2 = −0,99);
(viii) тип критической точки (0,1; 0,99) с меткой 8 — седло при (λ1 = −0,99, λ2 = 43,9);
(ix) тип критической точки (1; 1) с меткой 9 — устойчивый узел при (λ1 = −1, λ2 = −0,9).
Фазовый портрет с векторным полем на рис. 6(b) подтверждает результаты анализа.
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Рис. 6. Изоклины нуля (a) и фазовый портрет (b) системы (3) с девятью критическими точками.
Значения параметров µ = 20, θ1 = 6, θ2 = 2,5, w11 = 10, w12 = 5, w21 = 2, w22 = 3.

2.2. Случай B: Ингибиция. Снова рассмотрим пример ингибиторного поведения, при котором
число критических точек в системе максимально. Структура регуляторной матрицы

W =

(
+ −
− +

)
.

Для выбранной регуляторной матрицы

W =

(
10 −5
−2 3

)
система принимает вид 

dx1
dt

= e−e
−µ(10x1−5x2−θ1) − x1,

dx2
dt

= e−e
−µ(−2x1+3x2−θ2) − x2.

(5)

Критические точки находятся из системы уравненийx1 = e−e
−µ(10x1−5x2−θ1)

,

x2 = e−e
−µ(−2x1+3x2−θ2)

.
(6)

Изоклины нуля при конкретных выбранных значениях параметров изображены на рис. 7(a). Фа-
зовый портрет с векторным полем, приведенный на рис. 7(b), подтверждает результаты анализа
критических точек:
(i) тип критической точки (0; 0) с меткой 1 — устойчивый узел при (λ1 = −1, λ2 = −1);
(ii) тип критической точки (0,3; 0) с меткой 2 — седло при (λ1 = −1, λ2 = 71,2);
(iii) тип критической точки (1; 0) с меткой 3 — устойчивый узел при (λ1 = −1, λ2 = −1);
(iv) тип критической точки (1; 0,87) с меткой 4 — седло при (λ1 = −1, λ2 = 6,5);
(v) тип критической точки (0,59; 0,57) с меткой 5 — неустойчивый узел при (λ1 = 10,4, λ2 = 69,4);
(vi) тип критической точки (0; 0,16) с меткой 6 — седло при (λ1 = −1, λ2 = 16,4);
(vii) тип критической точки (0; 0,1) с меткой 7 — устойчивый узел при (λ1 = −1, λ2 = −1);
(viii) тип критической точки (0,81; 1) с меткой 8 — седло при (λ1 = −0,99, λ2 = 33,5);



ФУНКЦИЯ ГОМПЕРЦА В МОДЕЛИ ГЕННЫХ РЕГУЛЯТОРНЫХ СЕТЕЙ 93

1 2 3

4

5

6

7 8 9

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

(a)

0.0 0.5 1.0

0.0

0.5

1.0

(b)

Рис. 7. Изоклины нуля (a) и фазовый портрет (b) системы (5) с девятью критическими точками.
Значения параметров µ = 20, θ1 = 3, θ2 = 0,5, w11 = 10, w12 = −5, w21 = −2, w22 = 3.

(ix) тип критической точки (1; 0,99) с меткой 9 — устойчивый узел при (λ1 = −1, λ2 = −0,99).

2.3. Случай C: Активация-Ингибиция. Рассмотрим случай максимально возможного числа
критических точек для регуляторной матрицы со структурой

W =

(
+ +
− +

)
.

При конкретной регуляторной матрице

W =

(
10 5
−2 3

)
система дифференциальных уравнений принимает вид

dx1
dt

= e−e
−µ(10x1+5x2−θ1) − x1,

dx2
dt

= e−e
−µ(−2x1+3x2−θ2) − x2.

(7)

Критические точки суть решения системыx1 = e−e
−µ(10x1+5x2−θ1)

,

x2 = e−e
−µ(−2x1+3x2−θ2)

.
(8)

Изоклины нуля при выбранных значениях параметров изображены на рис. 8(a), а фазовый порт-
рет и векторное поле — на рис. 8(b). Результаты анализа критических точек:
(i) тип критической точки (0; 0) с меткой 1 — устойчивый узел при (λ1 = −1, λ2 = −1);
(ii) тип критической точки (0,6; 0) с меткой 2 — седло при (λ1 = −1, λ2 = 59,96);
(iii) тип критической точки (1; 0) с меткой 3 — устойчивый узел при (λ1 = −1, λ2 = −1);
(iv) тип критической точки (1; 0,87) с меткой 4 — седло при (λ1 = −1, λ2 = 6,5);
(v) тип критической точки (0,39; 0,43) с меткой 5 — неустойчивый узел при (λ1 = 35,1, λ2 = 58,2);
(vi) тип критической точки (0; 0,16) с меткой 6 — седло при (λ1 = −1, λ2 = 16,4);
(vii) тип критической точки (0; 1) с меткой 7 — устойчивый узел при (λ1 = −1, λ2 = −1);
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Рис. 8. Изоклины нуля (a) и фазовый портрет (b) системы (7) с девятью критическими точками.
Значения параметров µ = 20, θ1 = 6, θ2 = 0,5, w11 = 10, w12 = 5, w21 = −2, w22 = 3.

(viii) тип критической точки (0,1; 1) с меткой 8 — седло при (λ1 = −1, λ2 = 43,9);
(ix) тип критической точки (1; 0,99) с меткой 9 — устойчивый узел при (λ1 = −1, λ2 = −0,99).

2.4. Случай D: Ингибиция-активация. Снова рассмотрим случай максимального числа крити-
ческих точек для варианта «ингибиция-активация», которому соответствует регуляторная мат-
рица структуры

W =

(
+ −
+ +

)
.

При выбранных элементах регуляторной матрицы

W =

(
10 −5
2 3

)
система дифференциальных уравнений принимает вид

dx1
dt

= e−e
−µ(10x1−5x2−θ1) − x1,

dx2
dt

= e−e
−µ(2x1+3x2−θ2) − x2.

(9)

Критические точки находятся из системыx1 = e−e
−µ(10x1−5x2−θ1)

,

x2 = e−e
−µ(2x1+3x2−θ2)

,
(10)

определяющей изоклины нуля. Изоклины изображены на рис. 9(a), а фазовый портрет с вектор-
ным полем— на рис. 9(b). Результаты анализа критических точек:
(i) тип критической точки (0; 0) с меткой 1 — устойчивый узел при (λ1 = −1, λ2 = −1);
(ii) тип критической точки (0,3; 0) с меткой 2 — седло при (λ1 = −1, λ2 = 71,2);
(iii) тип критической точки (1; 0) с меткой 3 — устойчивый узел при (λ1 = −1, λ2 = −1);
(iv) тип критической точки (1; 0,16) с меткой 4 — седло при (λ1 = −1, λ2 = 16,4);
(v) тип критической точки (0,54; 0,48) с меткой 5 — неустойчивый узел (λ1 = 36,2, λ2 = 49,4);.
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Рис. 9. Изоклины нуля (a) и фазовый портрет (b) системы (9) с девятью критическими точками.
Значения параметров µ = 20, θ1 = 3, θ2 = 2,5, w11 = 10, w12 = −5, w21 = 2, w22 = 3.

(vi) тип критической точки (0; 0,86) с меткой 6 — седло при (λ1 = −1, λ2 = 6,5);
(vii) тип критической точки (0; 0,99) с меткой 7 — устойчивый узел при (λ1 = −1, λ2 = −0,9);
(viii) тип критической точки (0,8; 1) с меткой 8 — седло при (λ1 = −1, λ2 = 33,5);
(ix) тип критической точки (1; 1) с меткой 9 — устойчивый узел при (λ1 = −1, λ2 = −0,9).

3. Заключение. Для систем вида (1), моделирующих двухэлементные генные сети, имеют
место следующие факты:
(1) всегда существует положение равновесия;
(2) максимальное число положений равновесия (критических точек), за исключением вырожден-

ных случаев, равно девяти;
(3) структура множества критических точек при их максимальном количестве одна и та же для

всех рассмотренных случаев: четыре устойчивых узла, четыре седла и неустойчивый узел
в центре;

(4) возможно любое число критических точек от одной до девяти;
(5) аттракторы системы могут состоять из одной или нескольких критических точек;
(6) возможна классификация типичных поведений системы по положениям изоклин нуля;
(7) детальное исследование критических точек с вычислением характеристических значений

можно заменить геометрическим анализом взаимного расположения изоклин нуля;
(8) функция Гомперца применима при качественном и количественном исследовании моделей

генных сетей;
(9) возможно управление (контроль) системой путем изменения регулируемых параметров;
(10) возможно построение системы (модели) с нужными свойствами путем задания соответству-

ющих изоклин нуля и затем синтеза нужной системы.
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Abstract. The dynamics of a model of neural networks is studied. It is shown that the dynamical 
model of a three-dimensional neural network can have several attractors. These attractors can be 
in the form of stable equilibria and stable limit cycles. In particular, the model in question can 
have two three-dimensional limit cycles. 
Keywords: neural networks, mathematical modeling, attractors. 

1. Introduction 

The theory of neural networks appeared as an attempt to understand the structure and principles 
of the functioning of the human brain. Now it is rich in results and practically significant field of 
research in natural sciences. Artificial neural networks (ANN) can be understood as computing 
systems inspired by biological neural networks. Their mathematical models can be formulated in 
terms of systems of quasi-linear differential equations of the form Eq. (1). Each dependent variable 𝑥௜ is associated with a neuron. It accepts signals from other neurons (this is called input) and 
elaborates its own signal (it is called output) which is sent to a network. The nonlinearity is called 
the response function, or activation function. Usually, a sigmoidal function like  𝑓ሺ𝑧ሻ ൌ 1/ሺ1 ൅ expሺ−𝑧ሻሻ or tanhሺ𝑧ሻ is used. Recent attempts to introduce other response 
functions may be found in [6]-[9]. The system: 

⎩⎪⎪⎨
⎪⎪⎧ 𝑑𝑥ଵ𝑑𝑡 ൌ tanhሺ𝑎ଵଵ𝑥ଵ ൅⋯൅ 𝑎ଵ௡𝑥௡ሻ − 𝑏ଵ𝑥ଵ,𝑑𝑥ଶ𝑑𝑡 ൌ tanhሺ𝑎ଶଵ𝑥ଵ ൅⋯൅ 𝑎ଶ௡𝑥௡ሻ − 𝑏ଶ𝑥ଶ,…                                                                         𝑑𝑥௡𝑑𝑡 ൌ tanhሺ𝑎௡ଵ𝑥ଵ ൅⋯൅ 𝑎௡௡𝑥௡ሻ − 𝑏௡𝑥௡.

 (1)

Appears in neurodynamics [1], [2]. It is of general nature, and for appropriate choice of 
parameters 𝑎௜ and 𝑏௝ it may have rich dynamics. Moreover, for sufficiently large 𝑛 it can 
approximate (on a finite interval) any dynamical system [3]. The dynamics of solutions is a 
valuable object of investigation. Especially future states of a modeled neural networks are 
important to know. For this, the analysis of the phase space is needed. Future states are heavily 
dependent on attractors of the system, [4], [5]. In this note we will show that the three-dimensional 
system of the form Eq. (1) can have stable equilibria in the form of stable focuses. For the 
appropriate choice of parameters, it can have limit cycles attracting other solutions.  

2. Two-dimensional system 

Consider the system: 
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൞𝑑𝑥ଵ𝑑𝑡 ൌ tanhሺ𝑎ଵଵ𝑥ଵ ൅ 𝑎ଵଶ𝑥ଶሻ − 𝑏ଵ𝑥ଵ,𝑑𝑥ଶ𝑑𝑡 ൌ tanhሺ𝑎ଶଵ𝑥ଵ ൅ 𝑎ଶଶ𝑥ଶሻ − 𝑏ଶ𝑥ଶ. (2)

Proposition 1. System Eq. (2) can have stable critical points of the type stable focus. 
Proof by construction the example. Set 𝑎ଵଵ ൌ 𝑘, 𝑎ଵଶ ൌ 1.5, 𝑎ଶଵ ൌ –1.5, 𝑎ଶଶ ൌ 𝑘, 𝑘 ൌ 0.2, 𝑏ଵ ൌ 𝑏ଶ ൌ 1, see Fig. 1. 
Proposition 2. System Eq. (2) can have a limit cycle.  
Proof by constructing the example. Set 𝑎ଵଵ ൌ 𝑘, 𝑎ଵଶ ൌ 1.5, 𝑎ଶଵ ൌ –1.5, 𝑎ଶଶ ൌ 𝑘, 𝑘 ൌ 1.2, 𝑏ଵ ൌ 𝑏ଶ ൌ 1, see Fig. 2. 

 
Fig. 1. Stable focus as in Proposition 1 

 
Fig. 2. Limit cycle as in Proposition 2 

3. Three-dimensional system 

Consider the three-dimensional system of the form Eq. (1): 

⎩⎪⎨
⎪⎧𝑑𝑥ଵ𝑑𝑡 ൌ tanhሺ𝑎ଵଵ𝑥ଵ ൅ 𝑎ଵଶ𝑥ଶ ൅ 𝑎ଵଷ𝑥ଷሻ − 𝑏ଵ𝑥ଵ,𝑑𝑥ଶ𝑑𝑡 ൌ tanhሺ𝑎ଶଵ𝑥ଵ ൅ 𝑎ଶଶ𝑥ଶ ൅ 𝑎ଶଷ𝑥ଷሻ − 𝑏ଶ𝑥ଶ,𝑑𝑥ଷ𝑑𝑡 ൌ tanhሺ𝑎ଷଵ𝑥ଵ ൅ 𝑎ଷଶ𝑥ଶ ൅ 𝑎ଷଷ𝑥ଷሻ − 𝑏ଷ𝑥ଷ. (3)

Proposition 3. System Eq. (3) can have three limit cycles. 
Proof by construction the example. Let the coefficient matrix in Eq. (3) be: 

𝐴 ൌ ൭ 1.2 1.5 0−1.5 1.2 00 0 1.2൱ ,     𝑏ଵ ൌ 𝑏ଶ ൌ 𝑏ଷ ൌ 1, 
and see Fig. 4. 

The nullclines for the system Eq. (3) are given by the relations: 

ቐ0 ൌ tanhሺ𝑎ଵଵ𝑥ଵ ൅ 𝑎ଵଶ𝑥ଶ ൅ 𝑎ଵଷ𝑥ଷሻ − 𝑏ଵ𝑥ଵ,0 ൌ tanhሺ𝑎ଶଵ𝑥ଵ ൅ 𝑎ଶଶ𝑥ଶ ൅ 𝑎ଶଷ𝑥ଷሻ − 𝑏ଶ𝑥ଶ,0 ൌ tanhሺ𝑎ଷଵ𝑥ଵ ൅ 𝑎ଷଶ𝑥ଶ ൅ 𝑎ଷଷ𝑥ଷሻ − 𝑏ଷ𝑥ଷ. (4)

There are three periodic solutions. The respective trajectories are located in three planes (blue 
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ones in Fig. 3). The critical points inside the limit cycles have the following characteristic 
numbers: 𝜆ଵ = –0.32, 𝜆ଶ,ଷ = 0.2±1.5i for the critical points at (0; 0; ±0.65857). The central critical 
point (0;0;0) has 𝜆ଵ = 0.2, 𝜆ଶ,ଷ = 0.2 ±1.5i. Trajectories go away from the central critical point. 

 
Fig. 3. Nullclines of the system Eq. (3),  

matrix 𝐴 

 
Fig. 4. Three periodic trajectories  

of the system Eq. (3) 

4. Perturbation of three-dimensional system 

Let the coefficients of the system Eq. (3) be perturbed as: 

𝐴ଵ = ൭ 1.2 1.5 0.1−1.5 1.2 −0.1−0.2 −0.2 1.2 ൱. (5)

 

 
Fig. 5. Nullclines of the system Eq. (3) with the 

coefficient matrix 𝐴ଵ  

 
Fig. 6. Two periodic attractors of the system Eq. (3), 

coefficient matrix 𝐴ଵ, and converging some other 
trajectories. The middle limit cycles are destroyed 

There are still three critical points at (–0.051; –0.039;0.68723), (0; 0; 0), (0.051; 0.039;  
–0.68723). Their characteristic numbers are: 𝜆ଵ = –0.3543, 𝜆ଶ,ଷ = 0.19±1.4946i for the first and 
the third critical points, and 𝜆ଵ = 0.2266, 𝜆ଶ,ଷ = 0.1866±1.5i for the central point. 

Let the coefficients of the system Eq. (3) be perturbed as: 

𝐴ଶ = ൭ 1.2 1.5 1.3−1.5 1.2 −0.1−0.4 −0.1 1.2 ൱. (6)
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There are still three critical points at (0.0527; 0.6533; –0.76188), (0;0;0), (–0.0527; –0.6533; 
0.76188). Their characteristic numbers are: 𝜆ଵ = –0.4434, 𝜆ଶ,ଷ = 0.089±1.1882i for the first and 
the third critical points, and 𝜆ଵ = 0.2921, 𝜆ଶ,ଷ = 0.1539±1.6632™ for the central point.  

 
Fig. 7. Nullclines of the system Eq. (3) with the 

coefficient matrix 𝐴ଶ 

 
Fig. 8. Two periodic attractors of the system Eq. (3), 

coefficient matrix 𝐴ଶ, and converging trajectories 

5. Conclusions 

Dynamical systems, arising in neurodynamic, can have periodic attractors in the form of the 
limit cycles. Periodic attractors in two-dimensional systems appear as the result of Andronov-Hopf 
bifurcation, where the bifurcating parameter is the value at the main diagonal of the coefficients 
matrix 𝐴. Three-dimensional systems can have two attractors in the form of limit cycles. Small 
perturbation of the coefficient matrix 𝐴 can destroy limit cycles lying in a non-stable manifold 
(that is, in the middle plane in the example above). It seems that two side attractors (which were 
in stable manifolds) are preserved under the perturbations saving the types of the corresponding 
critical points. For practical purposes, special attention should be paid to perturbations that 
preserve the structure of the nullclines and, as a consequence, characteristics of equilibria (critical 
points). 
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On a system of ordinary differential equations,
arising in applications

Diana Ogorelova

Summary. 3D-model of artificial neural network is considered where the sigmoidal
function is the hyperbolic tangent. The description of attractors is obtained depending
on parameters.

MSC: 34C10, 34D45, 92C42

1 Introduction

The theory of neural networks is an actively investigated field [1]. It studied relations
between neurons in a human brain. Neurons are imagined as elements of a neural network,
communicating with each other by means of electric signals. In the book [2] a system of
ordinary differential equations is proposed as a model of neural network. This system has
much similarity to systems, which model gene regularity networks (GRN in short).

The two-dimensional GRN system can be written as
{

x′ = f1(x, y, µ1, θ1, w11, w12)− γ1x,
y′ = f2(x, y, µ2, θ2, w21, w22)− γ2y,

(1)

where fi are sigmoidal functions, increasing from zero to unity as the argument goes from
−∞ to +∞. The function f(z) = 1

1+e−µz is an example. Another example is the Gompertz

function f(z) = e−e−µz
. There are many other sigmoidal functions.

In the study of neural networks the system

x′i = tanh(
n∑

j=1

aijxj − θi)− bixi

is used [2, §6.10]. Here n is the number of neurons in a network. Our intent in this note
is to describe some properties of a 2D neuronal system.
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2 Hyperbolic tangent function

Consider the function tanh z =
ez − e−z

ez + e−z
.

Function tanh z is a sigmoidal function, that is, each tanh z is monotonically increasing
from minus unity to unity as the argument z goes from −∞ to +∞ and, moreover, the
graph of tanh z has only one point (0; 0) of inflexion.

-3 -2 -1 1 2 3 z

-1.0

-0.5

0.5

1.0

f HzL

a) Sigmoidal function f(z) = tanhz

-3 -2 -1 1 2 3 z

-1.0

-0.5

0.5

1.0

f HzL f ¢HzL f ¢¢HzL

b) Solid - f(x), dashed - f ′(x), dotted -
f ′′(x)

Fig. 2.1.
Consider the Hyperbolic tangent function in the form f(z) = tanh(µz − θ), where µ

and θ are positive parameters.
If the parameter µ → +∞, then graph of sigmoidal functions takes the piece-wise

linear form. If the parameter µ → 0, then the graph of the sigmoid function is smoothed
out. The parameter θ is responsible for the shift of the graph of sigmoidal function. If
θ → +∞, then the graph shifts to the right. If θ → −∞, then the graph shifts to the
left.

-5 -4 -3 -2 -1 1 2 z

-1.0

-0.5

0.5

1.0

f HzL

Fig. 2.2.Hyperbolic tangent function at the form f(z) = tanh(µz − θ), where µ = 5 and
θ = −2.

Our goal is to study the phase portrait and the attracting sets of this function.
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3 2D neuronal system

Consider the system {
x′ = tanh(w11x + w12y)− b1x,
y′ = tanh(w21x + w22y)− b2y,

(2)

where wij, bi are parameters.
Types of interaction are described by the so called regulatory matrix W = (wij). The

regulatory matrix elements can take any reasonable values

W =

(
w11 w12

w21 w22

)
.

The elements of regulatory matrix wij responsible for the nullclines shapes. There
exist four cases for type of interaction.

Case 1: Activation The regulatory matrix for this case in the form

W =

( ∗ +
+ ∗

)
,

where elements w11 and w22 can take any reasonable values, but elements w12 and w21 are
positive.

-4 -2 0 2 4

-4

-2

0

2

4

[1]w11 = 6, w12 =
3, w21 = 3, w22 =
6, b1 = b2 = 1

-4 -2 0 2 4

-4

-2

0

2

4

[2] w11 = −6, w12 =
3, w21 = 3, w22 =
−6, b1 = b2 = 1

-4 -2 0 2 4

-4

-2

0

2

4

[3] w11 = −6, w12 =
3, w21 = 3, w22 =

6, b1 = b2 = 1

-4 -2 0 2 4

-4

-2

0

2

4

[4] w11 = 6, w12 =
2, w21 = 2, w22 =
−6, b1 = b2 = 1

Fig. 3.1. Visualization of all cases

Case 2: Inhibition. The regulatory matrix for this case in the form

W =

( ∗ −
− ∗

)
,

where elements w11 and w22 can take any reasonable values, but elements w12 and w21 are
negative.
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-4 -2 0 2 4

-4

-2

0

2

4

[5]w11 = 6, w12 =
−3, w21 = −3, w22 =

6, b1 = b2 = 1

-4 -2 0 2 4

-4

-2

0

2

4

[6]w11 = −6, w12 =
−3, w21 = −3, w22 =
−6, b1 = b2 = 1

-4 -2 0 2 4

-4

-2

0

2

4

[7] w11 = −6, w12 =
−3, w21 = −3, w22 =

6, b1 = b2 = 1

-4 -2 0 2 4

-4

-2

0

2

4

[8] w11 = 6, w12 =
−2, w21 = −2, w22 =
−6, b1 = b2 = 1

Fig. 3.2. Visualization of all cases

Case 3: Activation - Inhibition. The regulatory matrix for this case in the form

W =

( ∗ +
− ∗

)
,

where elements w11 and w22 can take any reasonable values element, but w12 is positive
and element w21 is negative.

-4 -2 0 2 4

-4

-2

0

2

4

[9] w11 = 6, w12 =
3, w21 = −3, w22 =

6, b1 = b2 = 1

-4 -2 0 2 4

-4

-2

0

2

4

[10] w11 = −6, w12 =
3, w21 = −3, w22 =
−6, b1 = b2 = 1

-4 -2 0 2 4

-4

-2

0

2

4

[11] w11 = −6, w12 =
3, w21 = −3, w22 =

6, b1 = b2 = 1

-4 -2 0 2 4

-4

-2

0

2

4

[12] w11 = 6, w12 =
2, w21 = −2, w22 =
−6, b1 = b2 = 1

Fig. 3.3. Visualization of all cases

Case 4: Inhibition - Activation. The regulatory matrix for this case in the form

W =

( ∗ −
+ ∗

)
,

where elements w11 and w22 can take any reasonable values but element w12 is negative
and element w21 is positive.
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-4 -2 0 2 4

-4

-2

0

2

4

[13] w11 = 6, w12 =
−3, w21 = 3, w22 =

6, b1 = b2 = 1

-4 -2 0 2 4

-4

-2

0

2

4

[14]w11 = −6, w12 =
−3, w21 = 3, w22 =
−6, b1 = b2 = 1

-4 -2 0 2 4

-4

-2

0

2

4

[15]w11 = −6, w12 =
−3, w21 = 3, w22 =

6, b1 = b2 = 1

-4 -2 0 2 4

-4

-2

0

2

4

[16]w11 = 6, w12 =
−2, w21 = 2, w22 =
−6, b1 = b2 = 1

Fig. 3.4. Visualization of all cases

Corollary. There exists at least one critical point and the maximal number of critical
points is nine.

Proposition 1. All critical points (x, y) are in (−1, 1)× (−1, 1).
The vector field, defined by the system (2), is directed inward on the border of the

box

Q2 = {(x, y) : |x| < 1

b1

, |y| < 1

b2

}.

No trajectory can escape the box.

4 Critical points

The system in extended form is

{
x′ = tanh[µ1(w11x + w12y − θ1)]− b1x,
y′ = tanh[µ2(w21x + w22y − θ2)]− b2y,

(3)

where µi and bi are positive parameters.The coefficient matrix is

W =

(
w11 w12

w21 w22

)
.

The nullclines are given by the equations





x =
1

b1

tanh[µ1(w11x + w12y − θ1)],

y =
1

b2

tanh[µ2(w21x + w22y − θ2)].
(4)

There exists at least one critical point. For analysis of critical points we need the
linearized system (3).

For analysis of critical points we need the linearized system. It is

{
u′ = (−b1 + f1x) · u + f1y · v,
v′ = f2x · u + (−b2 + f2y) · v,

(5)
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where

{
f1 = tanh[µ1(w11x + w12y − θ1)],
f2 = tanh[µ2(w21x + w22y − θ2)].

(6)

A =

∣∣∣∣
−b1 + f1x f1y

f2x −b2 + f2y

∣∣∣∣ (7)

A− λI =

∣∣∣∣
−b1 + f1x − λ f1y

f2x −b2 + f2y − λ

∣∣∣∣ (8)

and the characteristic equation is

det|A− λI| = (−b1 + f1x − λ)(−b2 + f2y − λ)− (f1y)(f2x) = b1b2 − b1f2y + b1λ−
b2f1x + f1xf2y − f1xλ + b2λ− f2yλ + λ2 − f1yf2x = λ2 + (b1 − f1x + b2 − f2y)λ+

+(b1b2 − b1f2y − b2f1x + f1xf2y − f1yf2x) = 0.
(9)

To simplify we can write the characteristic equation as

λ2 + Bλ + C = 0, (10)

B = b1 − f1x + b2 − f2y, (11)

C = b1b2 − b1f2y − b2f1x + f1xf2y − f1yf2x. (12)

Example 1. Let consider the regulatory matrix in the form

W =

(
3 3
−3 2

)
,

b1 = b2 = µ1 = µ2 = 1, θ1 = θ2 = 0.1. There are respectively one critical point
(−0.018; 0.045). The phase portrait of system (3) for one critical point is

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Fig. 4.1. Limit cycle. Critical point is a unstable focus
(λ1 = 1.49744− 2.95413i, λ2 = 1.49744 + 2.95413i)



11

Example 2. Let consider the regulatory matrix of the form

W =

(
1 2
1 1

)
,

b1 = b2 = µ1 = µ2 = 1, θ1 = θ2 = 0.1. There are respectively three critical points
(−0.995;−0.968), (0.1; 0.05), (0.993; 0.951). The phase portrait of system (3) for three
critical points is

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Fig. 4.2. Side critical points are stable nodes, middle point is a saddle

Example 3. Let consider the regulatory matrix of the form

W =

(
3 1
1 3

)
,

b1 = b2 = µ1 = µ2 = 1, θ1 = θ2 = 0.1. There are respectively nine critical points. The
phase portrait of system (3) for nine critical points is

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Fig. 4.3. Four side critical points are stable nodes, four critical points are saddle and
middle point is unstable node
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Abstract—We provide the conditions for the existence of a
periodic solution in two-dimensional systems of ordinary differ-
ential equations, which arise in the theory of genetic and artificial
neural networks. The proof is based on Poincare-Andronov-
Hopf bifurcation. Multidimensional attractors can be constructed
using the two-dimensional ones. Illustrations and examples are
provided.

Index Terms—Mathematical modelling, genetic regulatory net-
works, differential equations, attractors.

I. I NTRODUCTION

Large networks are in the focus of investigation in late
decades due to their applicability in practical studies. Genetic
regulatory networks (GRN) have applications in medicine [7]
and are studied extensively by methods of mathematical mod-
eling. The relative information can be found in [1], [2], [3],
[6], [5], [15], [17], [13]. Of particular interest are the evolution
of GRN and predicting future states. For this, modeling using
dynamic systems is efficient. We consider models of GRN
networks using quasi-linear ordinary differential equations of
the form (1). The nonlinearity is represented by a sigmoidal
function. We use logistic function. Some other sigmoidal
functions, Hill’s function [7], Gompertz function [15], etc.,
also can be used. The special attention is paid to attractors,
since they form future states of a network. In this paper, we
deal with periodic attractors. Systems of ordinary differential
equations that model GRN are similar to those that are used
to model artificial neuronal networks (ANN) ( [4], [14], [12]),
[11]. So we treat them together, and try to compare both.

We consider the two-dimensional systems of the form
{

x′1 = 1
1+e−µ1(kx1+ax2−θ1) − x1,

x′2 = 1
1+e−µ2(bx1+kx2−θ2) − x2.

(1)

and {
x′1 = tanh (kx1 + ax2)− x1,
x′2 = tanh (bx1 + kx2)− x2.

(2)

The system (1) first appeared in the work [18] (see also [10])
as the model of two-dimensional neuronal networks. Systems
of the form (2) were discussed in [16, Ch. 6].

Both systems can suffer the Poincare-Andronov-Hopf (in
short: Hopf bifurcation) bifurcation with respect to the pa-
rameterk.

We suggest that
(A1): a · b < 0;
(A2): k is positive.

Under these conditions the vector field is whirling (clock-
wise for a > 0, b < 0 and counter-clockwise fora < 0,
b > 0). The nullclines are given by

{
0 = tanh (kx1 + ax2)− x1,
0 = tanh (bx1 + kx2)− x2.

(3)

The critical points are solutions of (3). It is possible that there
is a single critical pointP.

Suppose thata andb have been chosen. It is known that by
certain choice of the parametersθ a critical point can be placed
at the origin(0, 0) for ANN system and at the point(0.5, 0.5)
for GRN system [9]. Letθ be chosen appropriately for any
choice ofk, a, b andP is put at the central position. Suppose
that P is a single critical point. It can be shown by standard
linearization analysis that fork smallP is stable focus and the
real part of the characteristic numbers is negative. It serves as
an attractor for system (2). The pointP is characterized by the
characteristic numbersλ1,2 = α(k)+β(k)i, wherei =

√−1.
For some largerk the real partα(k) passes through zero

and stays positive. A periodic solution appears. This is called
usually the Hopf bifurcation. It can be observed any time,
when experimenting with systems (1) and (2) and choosing
the parameterk appropriately.

Our aim is to prove this precisely (using some existing
proof for general planar systems). Then we show how now
precisely justified periodic solutions (limit cycles) can be
used to construct periodic attractors for systems of even
dimensionality.

II. GRN-SYSTEM

Consider the system (1) under the conditions (A1) and (A2).
The vector field rotates then in the unit squareQ2 = {0 <
x1 < 1, 0 < x2 < 1} clock-wise, ifa > 0 (respectivelyb < 0),
or counter-clock-wise, ifa < 0.) The nullclines

{
x1 = 1

1+e−µ1(kx1+ax2−θ1) ,

x2 = 1
1+e−µ2(bx1+kx2−θ2) .

(4)

intersect at the point(0.5, 0.5), if θ1 = 0.5(k + a), θ2 =
0.5(b + k). This can be checked immediately. This trick was
used also in a more general situation in the paper [9]. This
does not exclude the possibility of the existence of more
critical points. All of them must locate inQ2. If the nullclines
(4) intersect only ones, a single critical point (it then is



at (0.5, 0.5)) has characteristic values (this is the result of
standard linearization analysis)

λ1,2 = −1 + k ±
√
|a b|i, i =

√−1 (5)

for the special choice ofµ1 = µ2 = 4. This critical point is a
stable focus for smallk and an unstable one for largerk.

Since the rotating vector field is repelling in a neighborhood
of the unstable focus but is directed inward on the borders
of Q2, the existence of a periodic solution is expected. In
multiple examples for various choices of the parametersa, b, k
(satisfying the conditions (A1) and (A2)) the periodic solutions
were constructed computationally.

Consider the result formulated in [8].
For the system

{
x′ = fµ(x, y),
y′ = gµ(x, y), (6)

depending on the parameterµ, the following is true.

Proposition 2.1:Let (x0, y0) be the critical point of (6) and
λ(µ) = α(µ)± iβ(µ).

Suppose that for certainµ = µ0 the following conditions
are satisfied:

1. α(µ0) = 0, β(µ0) = ω 6= 0;

2. dα(µ)/dµ 6= 0|µ=µ0 = d;

3. a 6= 0, where
a=1/16(fxxx + fxyy + gxxy + gyyy) + 1/16ω(fxy(fxx +
fyy) − gxy(gxx + gyy) − fxxgxx + fyygyy) with
fxy = ∂2fµ/(∂x∂y)(x0, y0) at µ = µ0, etc.

Then a unique curve of periodic solutions bifurcates from
the fixed point into the regionµ > µ0 if a·d < 0.

Let us check the system (1) for these conditions. The
bifurcation parameter isk. The real part ofλ is α(k) = −1+k.
The imaginary part isβ(k) =

√
|a b|. So the condition 1 and

2 in Proposition 2.1 are satisfied. The condition 3 is tricky.
Using Wolfram Mathematica for analytical calculation of the
expression in the condition 3, [8], we arrive to the following
assertion.

Proposition 2.2:The expression (denoteda) in the condition
3 of [8] for the system (1), whereθ1 = 0.5(k + a), θ2 =
0.5(b + k), is

a = k((−0.0625a2−0.0625k2)µ3
1+(−0.0625b2−0.0625k2)µ3

2).
(7)

So for k > 0 the condition 3 in Proposition 2.1 is fulfilled.

III. E XAMPLE FOR GRN-SYSTEM

In this section we provide examples of periodic attractors
for four-dimensional and five dimensional systems.

All GRN-systems are of the form




x′1 = 1
1+e−µ1(w11x1+w12x2+...+w1nxn−θ1) − x1,

x′2 = 1
1+e−µ2(w21x1+w22x2+...+w2nxn−θ2) − x2,

...
x′n = 1

1+e−µn(wn1x1+wn2x2+...+wnnxn−θn) − xn,

(8)

Example. Consider system (8) forn = 4.




x′1 = 1
1+e−4(2x1+3x2−2.5) − x1,

x′2 = 1
1+e−4(−3x1+2x2+0.5) − x2,

x′3 = 1
1+e−4(2x3+3x4−2.5) − x3,

x′4 = 1
1+e−4(−3x3+2x4+0.5) − x4.

(9)
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1.0

X2

Fig. 1. The limit cycle in the 2D system corresponding to the first and the
second equations in (9), with the nullclines (blue and red), the vector field
and a solution, tending to the limit cycle (dashed).
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Fig. 2. The projection of the attractor in the system (9) onto(x1, x2, x3)-
space.
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Fig. 3. The projection of the attractor in the system (9) onto(x1, x3, x4)-
space.
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Fig. 4. The projection of the attractor in the system (9) onto(x2, x3, x4)-
space.
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Fig. 5. Ten solutions of the system (9) (red), and the attractor (black). The
projection onto(x2, x3, x4)-space.

IV. ANN- SYSTEM

The hyperbolic tangent sigmoid function represents the
hidden layer of sigmoid neurons followed by an output layer
of positive linear neurons.

Consider a system (2). The vector field rotates in the square
G2 = {−1 < x1 < 1,−1 < x2 < 1}. The nullclines

{
x1 = tanh (kx1 + ax2),
x2 = tanh (bx1 + kx2)

(10)

intersect at the point(0, 0). If the nullclines (10) have a single
cross-point (it is then at(0, 0)) and if we analyze the linearized
system for nullclines (10), the characteristic values for the
critical point are the same (5) as for GRN-system. This critical
point is a stable focus, ifk < 1 and an unstable one fork > 1.
we can show that the conditions in Proposition 2.1 are fulfilled.

Proposition 4.1:The expression (denoteda) in the condition
3 of [8] for the system (2), is

a = 1/16(−2a2k − 2b2k − 4k3). (11)

Calculations were made in Wolfram Mathematica analyti-
cally. Of course, the expression above is negative fork > 0. So
Proposition 2.1 holds and the existence of periodic solutions
in ANN-system (2) is confirmed also theoretically.

V. EXAMPLE FOR ANN-SYSTEM

Consider the four-dimensional system, where we provide
examples of periodic attractors.

All ANN-systems for four-dimensional system are of the
form





x′1 = tanh (w11x1 + w12x2 + w13x3 + w14x4)− x1,
x′2 = tanh (w21x1 + w22x2 + w23x3 + w24x4 − x2,
x′3 = tanh (w31x1 + w32x2 + w33x3 + w34x4 − x3,
x′4 = tanh (w41x1 + w42x2 + w43x3 + w44x4 − x4.

(12)
Consider system (12) whereθi = 0 and regulatory matrix

is

W =




k a 0 0
b k 0 0
0 0 k a
0 0 b k


 .

Example 1.



x′1 = tanh (2x1 − x2)− x1,
x′2 = tanh (3x1 + 2x2)− x2,
x′3 = tanh (2x3 − x4)− x3,
x′4 = tanh (3x3 + 2x4)− x4.

(13)

This system is studied numerically (Wolfram Mathematica),
providing description of the phase space and images of 2D and
3D projections.

The oscillatory solutions as shown in Figure 6 and Figure
7.

20 40 60 80 100
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Fig. 6. Solutions(x1(t), x2(t)) of the system (13).
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Fig. 7. Solutions(x3(t), x4(t)) of the system (13).

The attractor as shown in Figure 8 and Figure 9.
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Fig. 8. The projection of the attractor of system (13) onto 2D(x1, x2)-
subspace.

X1

X2

X3

Fig. 9. The projection of the attractor of system (13) onto 3D(x1, x2, x3)-
subspace.

VI. CONCLUSIONS

Both GRN and ANN systems are similar. The question
about possible attractors is in focus for both systems. The
periodic attractors can exist in systems of both types, To be
sure, one may first investigate the two-dimensional systems,
construct periodic solutions, and then compose systems of
higher dimensions, where the matrices of parameters are
block-matrices with 2D blocks. Attractors emerge in new
phase space. It is not difficult to construct 2D systems with
periodic solutions, which are represented by closed trajecto-
ries. As to the precise mathematical proof of their existence,
it is to be mentioned, that periodic solutions in known ex-
amples emerge as the result of Andronov-Hopf bifurcation.
We consider systems with the matrices of special structure,
depending on the parameterk. In this system the vector field,
generated by differential equations, is rotating. Fork small
a single critical point (this is the requirement) is a stable
focus. Under increasing ofk the real part of the characteristic
numbers passes through zero, the critical point changes its type
to unstable focus and the limit cycle emerges. We have shown
that for our two systems under mild conditions the hypotheses
of a theorem, ensuring the existence of a branch (with respect
to k) of periodic solutions, are fulfilled.

Then, based on the proven existence of periodic solutions,
the examples of 2D attractors in the form of limit cycles, are
constructed. These examples are used to construct systems of

dimension four.
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Abstract: In the language of mathematics, the method of cognition of the surrounding world in which the description 
of the object is carried out the name is mathematical modeling. The study of the model is carried out using certain 
mathematical methods. The systems of the ordinary differential equations modeling artificial neuronal networks and 
the systems modeling the gene regulatory networks are considered. The one system consists of a sigmoidal function 
which depends on linear combinations of the arguments minus the linear part. The other system consists of a sigmoidal 
function which depends on the hyperbolic tangent function. The linear combinations and hyperbolic tangent functions 
of the arguments are described by one regulatory matrix. For the three-dimensional cases, two types of matrices are 
considered and the behavior of the solutions of the system is analyzed. The attracting sets are constructed for several 
cases. Illustrative examples are provided. The list of references consists of 19 items.

Keywords: gene regulatory network, artificial neural network, chaotic solution, periodic solution, Lyapunov exponents
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1. Introduction
Complex regulatory networks are being explored in many areas of science, including biochemistry, biology [1-

2], ecology, and engineering. Gene regulatory network (GRN in short) is a complex dynamical system that is present in 
living organisms and which is constantly changing their states responding to fluctuations in their environment [3]. For 
a complete description of gene networks, it is necessary to analyze the processes occurring in them at the level of the 
whole organism. In this case, it is possible to describe gene networks, some parts of which are distributed over various 
large compartments of their organism, such as organs and tissues. In many cases, it is possible to determine the direction 
of processes within a specific fragment of the gene network. The main approaches to the description of gene networks 
and modeling their dynamics are a logical description; a description of the gene network using a system of nonlinear 
differential equations [3]; stochastic gene network models; graph theory [1], Boolean modeling [1]. Nonlinear ordinary 
differential equations are the most-widespread formalism for modeling genetic regulatory networks [4-7].

An artificial neural network (ANN in short) is a mathematical model created in the likeness of biological 
neural networks [8]. Similar to a natural analog, an artificial neural network consists of neurons and synapses [9]. 
Neural networks are used to solve many problems: recognition and generation of images (face identification in video 
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surveillance systems); speech and language (language for chat-bots and service robots); weather prediction; medical 
diagnosis [9-10]; business fields [11-12]; traffic monitoring systems [13]. 

In our paper, we use nonlinear ordinary differential equations to model the GRN and ANN. Our goal is to describe 
the behavior of the systems and to compare the results of GRN and ANN. In our previous papers on GRN networks 
multiple results on attractors and their properties were obtained. By comparison with models of neuronal networks 
we wish to show that similar results can be presented for neuronal networks. Our consideration is geometrical. The 
main intent is to use the 2D and 3D projections on different subspaces, to construct the graphs of systems solutions. 
Visualizations are provided. The dynamics of Lyapunov exponents are shown. Calculations and visualizations are 
performed using Wolfram Mathematics. 

2. Gene regulatory network
Consider the three-dimensional system

( )

( )

( )

1 11 1 12 2 13 3 1

2 21 1 22 2 23 3 2

3 31 1 32 2 33 3 3

1 1 1

2 2 2

3 3 3

1 ,
1

1 ,
1

1 .
1

'
w x w x w x

'
w x w x w x

'
w x w x w x

x v x
e

x v x
e

x v x
e

µ θ

µ θ

µ θ

− + + −

− + + −

− + + −


=

 +
 =

+

 =
 +

−

−

−

(1)

In the context of GRN theory, this system describes the three-element network. The link between any two elements 
xi and xj is associated with the element wij of the regulatory matrix

11 12 13

21 22 23

31 32 33

.
w w w

W w w w
w w w

 
 =  
 
 

Positivity of wij means the activation of xi by xj, negativity means inhibition, and zero value is for no relation. 
System (1) was studied, in particular, in the paper [14].

(2)

( )

( )

( )

1 11 1 12 2 13 3 1

2 21 1 22 2 23 3 2

3 31 1 32 2 33 3 3

1 1

2 2

3 3

1 ,
1

1 ,
1

1 .
1

w x w x w x

w x w x w x

w x w x w x

v x
e

v x
e

v x
e

µ θ

µ θ

µ θ

− + + −

− + + −

− + + −


=

 +
 =

+

 =
 +

All critical points are located in the open parallelepiped 

1 2 3 1 2 3
1 2 3

1 1 1, , , 0 , 0( ) : 0x x x x x x
v v v

< < < < <
 

< 
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(3)
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2.1 An example of the system (1) with a periodic solution

Let the coefficient matrix in (1) be

(4)
2.5 1.5 0
4 2.5 0
0 0 1.2

W
− 

 =  
 
 

and v1 = v2 = v3 = 1; μ1 = 2.3; μ2 = 1.9; μ3 = 1; θ1 = 0.5; θ2 = 2.5; θ3 = 1.
There is one critical point (0.320154; 0.418536; 0.36235). The characteristic numbers are λ1 = -0.72 and λ2,3 = 0.2 

± 1.18i. The type of critical point is an unstable saddle-focus. The nullclines of the system (1) and the stable periodic 
solution are depicted in Figure 1 and Figure 2. The graphs of xi(t), i = 1, 2, 3 of the system (1) with the regulatory matrix 
(4) are depicted in Figure 3.

0.0
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Figure 1. The nullclines of the system (1) with the regulatory matrix (4).
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Figure 2. The periodic solution of the system (1) with the regulatory matrix (4).
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Figure 3. The graphs of xi(t), i = 1, 2, 3 of the system (1) with the regulatory matrix (4).

Similar systems are considered in paper [14]. 
The dynamics of Lyapunov exponents (LE1 = 0, LE2 = -0.3166; LE3 = -0.7227) are shown in Figure 4. The 

following set of LEs characterizes the stable limit cycle.
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Figure 4. The dynamics of Lyapunov exponents.

The sum of Lyapunov exponents of the system (1) with the regulatory matrix (4) is negative that is why it is a 
dissipative system.

2.2 An example of the system (2) with a chaotic solution

Under chaos in ancient Greek mythology understood the pre-life confusion. Greek “chaos” is the infinite first 
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everyday mass, which subsequently gave rise to all the existing. Physicists call this science-“nonlinear dynamics”, 
mathematicians-“chaos theory”, all the rest-“nonlinear science”. 

Chaos is a multifaceted phenomenon that is not easily classified or identified. There is no universally accepted 
definition for chaos, but the following characteristics are nearly always displayed by the solutions of chaotic systems [15].

There are several characteristics that identify the behavior of chaotic systems [16]. Usually to identify a chaotic 
system scientists use the method of Lyapunov exponents [16]. A 3D dynamical system is chaotic if it has one positive 
Lyapunov exponent (LE in short) [17]. Also, a system is said to be dissipative if the sum of all Lyapunov exponents of 
the system (1) is negative [18].

Consider the system (1), where v1 = 0.65, v2 = 0.42, v3 = 0.1, μ1 = μ2 = 7, μ3 = 13, θ1 = 0.5, θ2 = 0.3, θ3 = 0.7. 
The regulatory matrix of the system (1) is

0 1 5.63
1 0 0.133
1 0.02 0.03

W
− 

 =  
 
 

(5)

The initial conditions are

1 2 3(1) 0.2; (1) 1.3; (1) 0.4.x x x= = = (6)

There is one critical point. The characteristic equation for critical point (0.370688; 1.59227; 0.223125) is -λ3 + 
Aλ2 + Bλ + C = 0, where A = -1.16149; B = -0.428566; C = -0.689604. Solving the equation, we have λ1 = -1.257; λ2,3 = 
0.0477516 ± 0.739143i. The type of critical point is an unstable saddle-focus. The nullclines of the system (1) with the 
regulatory matrix (4) and the chaotic attractor of the system (1) with the regulatory matrix (4) are depicted in Figure 5 
and Figure 6. The graphs of xi(t), i = 1, 2, 3 of the system (1) with the regulatory matrix (4) are shown in Figure 7.
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Figure 5. The nullclines of the system (1) with the regulatory matrix (4).



Contemporary Mathematics 222 | Inna Samuilik, et al.

0.2

0.1

0.0
0.0

0.4

0.2

0.6

1.0

1.50.3

x2

x1

x3

Figure 6. The chaotic attractor of the system (1) with the regulatory matrix (4).

(x1, x2, x3)

0.5

1.5

1.0

100 400200 300 500 600 700
t

Figure 7. The graphs of xi(t), i = 1, 2, 3 of the system (1) with the regulatory matrix (4).

Similar systems were considered in papers [14], [19] and [20].
The dynamics of Lyapunov exponents (LE1 = 0.03, LE2 = 0; LE3 = -1.16) are shown in Figure 8.
At the end of the 70s of the last century, the Kaplan-Yorke formula was proposed to estimate the fractal size-in 

terms of Lyapunov exponents [12].
Let calculate the Kaplan-Yorke dimension using the formula

11

1 j

KY j
jj

D j L
L =+

= + ∑

with j representing the index such that
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1

1 1
0,  0

j j

j j
j j

L L
+

= =
> <∑ ∑

Such formula is considered in papers [12, 21].
Kaplan-Yorke dimension for the system (1) with the regulatory matrix (5) is DKY = 2.03. The sum of Lyapunov 

exponents of the system (1) with the regulatory matrix (5) is negative that is why it is a dissipative system. The 
dynamics of Lyapunov exponents are shown in Figure 8.
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Figure 8. The dynamics of Lyapunov exponents.

3. Artificial neural network
Consider the three-dimensional system

(7)
1 11 1 12 2 13 3 1 1

2 21 1 22 2 23 3 2 2
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The system (7) is considered in papers [22, 23].
The nullclines are given as

(8)
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3.1 Examples of the system (7) with regulatory matrices (4) and (5)

Consider the coefficient matrix (4) and b1 = b2 = b3 = 1.
There are three critical points. First critical point is (0; 0; 0). The characteristic numbers are λ1 = 0.2 and λ2,3 = 

1.5 ± 2.45i. The type of critical point is an unstable focus-node. Second critical point is (0; 0; 0.66). The characteristic 
numbers are λ1 = -0.32 and λ2,3 = 1.5 ± 2.45i. The type of critical point is an unstable saddle-focus. Third critical point 
is (0; 0; -0.66). The characteristic numbers are λ1 = -0.32 and λ2,3 = 1.5 ± 2.45i. The type of critical point is an unstable 
saddle-focus. The nullclines of the system (7) with the regulatory matrix (4) and three periodic solutions of the system (7) 
with the regulatory matrix (4) are shown in Figure 9 and Figure 10. The graphs of xi(t), i = 1, 2, 3 of the system (7) with 
the regulatory matrix (4) are depicted in Figure 11.
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Figure 9. The nullclines of the system (7) with the regulatory matrix (4).
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Figure 10.Three periodic solutions of the system (7) with the regulatory matrix (4).
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Figure 11. The graphs of xi(t), i = 1, 2, 3 of the system (7) with the regulatory matrix (4).

Similar systems are considered in paper [22]. 
The dynamics of Lyapunov exponents (LE1 = 0, LE2 = -0.32; LE3 = -0.78) are shown in Figure 12. The following 

set of LEs characterizes the stable limit cycle.
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Figure 12. The dynamics of Lyapunov exponents.

The sum of Lyapunov exponents of the system (1) with the regulatory matrix (5) is negative that is why it is a 
dissipative system.

Consider the coefficient matrix (5) and b1 = 0.65, b2 = 0.42, b3 = 0.1. The coefficients of regulatory matrix and 
parameters are the same. The initial conditions are (6). There is no chaotic solution. The nullclines of the system (7) 
with the regulatory matrix (5) and the solution of the system (7) with the regulatory matrix (5) and the initial conditions (6) 
are shown in Figure 13 and Figure 14. The graphs of xi(t), i = 1, 2, 3 of the system (7) with the regulatory matrix (5) are 
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depicted in Figure 15.
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Figure 13. The nullclines of the system (7) with the regulatory matrix (5).
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Figure 14. The solution of the system (7) with the regulatory matrix (5) and the initial conditions (6).

The dynamics of Lyapunov exponents (LE1 = -0.32, LE2 = -0.33; LE3 = -0.49) are shown in Figure 16. The 
following set of LEs characterizes the stable fixed point.

The sum of Lyapunov exponents of the system (1) with the regulatory matrix (5) is negative that is why it is a 
dissipative system.
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Figure 15. The graphs of xi(t), i = 1, 2, 3 of the system (7) with the regulatory matrix (5).
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Figure 16. The dynamics of Lyapunov exponents.

4. Conclusion
The article deals with models of three-dimensional genetic and neural networks with a certain set of parameters 

and two different regulatory matrices. In a genetic system with a matrix (4), the existence of a periodic solution is 
shown. For a neural system with the same matrix, the existence of three periodic solutions is shown. In a genetic system 
with a matrix (5), a solution with chaotic behavior is indicated. This is evidenced by the Lyapunov curves, the three-
dimensional graphics of the solution and the graphs of the three components of the solution. At the same time, in a 
neural system with the same regulatory matrix, this solution does not detect chaotic behavior. This observation is in line 
with statement [23, section 6.10.1] that the minimum dimension of systems of the form (7) in which chaos is possible is 
four. 
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Abstract: The question of targeted control over trajectories of systems of differential equations
encountered in the theory of genetic and neural networks is considered. Examples are given of
transferring trajectories corresponding to network states from the basin of attraction of one attractor
to the basin of attraction of the target attractor. This article considers a system of ordinary differential
equations that arises in the theory of gene networks. Each trajectory describes the current and future
states of the network. The question of the possibility of reorienting a given trajectory from the initial
state to the assigned attractor is considered. This implies an only partial control of the network. The
difficulty lies in the selection of parameters, the change of which leads to the goal. Similar problems
arise when modeling the response of the body’s gene networks to serious diseases (e.g., leukemia).
Solving such problems is the first step in the process of applying mathematical methods in medicine
and pharmacology.

Keywords: network control; attracting sets; dynamical system; phase portrait; gene regulatory networks;
artificial neural systems

MSC: 34B15; 34B23; 34C60; 34D45

1. Introduction

Let us start with the following citation: “Complex systems are networks made of a
number of components that interact with each other, typically in a nonlinear fashion. Com-
plex systems may arise and evolve through self-organization, such that they are neither
completely regular nor completely random, permitting the development of emergent behav-
ior at macroscopic scales. Complex systems science is a rapidly growing scientific research
area that fills the huge gap between the two traditional views that consider systems made
of either completely independent or completely coupled components. . . These properties
can be found in many real-world systems, e.g., gene regulatory networks within a cell,
physiological systems of an organism, brains and other neural systems” [1].

We proceed with considering gene regulatory networks (GRNs in short). Living cells
in an organism form complicated systems that can be studied using mathematical methods
as well. The aim of these studies is to understand the complexity of these systems and
the structure of their interrelations. Every element of such systems can influence others
activating or inhibiting them. The gene regulatory system (GRN) is defined as a network
of genes and their activating–inhibiting connections. Different mathematical models were
used to analyze networks [2]. Models using differential equations are especially effective
since they treat networks as dynamical objects and involve the concept of an attractor.
Differential equations allow for describing oscillatory behavior, stationary solutions, and
cyclical patterns. Nonlinear ordinary differential equations are widespread mathematical
tools for studying the regulatory interactions between genes. The time-dependent variables
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x(t) represent the concentration of gene products mRNAs or proteins. These variables are
positive-valued.

It was noticed by biologists that cells of living organisms are adaptable to changes in an
environment even if these changes are very rapid. It was proposed to use attractor selection
as the principal mechanism of adaptation to unknown changes in biological systems [3].

The main idea of attractor selection is that the system is driven by deterministic and
stochastic components. Attractors are a part of the solution space. Conditions of such
system are controlled by a simple feedback. When conditions of a system are suitable (close
to one of the attractors), it is driven almost only by deterministic behavior, and stochastic
influence is very limited. When conditions of the systems are poor, the system is driven
mostly by stochastic behavior. In this case, the system randomly fluctuates in search for a
new attractor. When it is found, deterministic behavior again dominates over stochastic [4].

On the other hand, the system can be controlled by changing the adjustable parameters
(if any). Then, stochastic behavior can be neglected (this is our assumption) and only the
deterministic model can be studied. If we use the attractor selection mechanism for network
resource management, at first we should define a regulatory matrix W = {wij}, which
shows relationships between node pairs, that is, how each node pair affects each other
including itself. As it was proposed by some authors ([5], for instance), three types of
influence exist, namely activation, inhibition, and no relation, corresponding to positive,
negative values of wij in the interval [−1, 1], or zero. We do not restrict the range of values
for the entries wij.

Some authors consider GRNs in the conditions of serious disease [6–8]. The mathe-
matical model consists of a system of ordinary differential equations, which possess some
remarkable properties. This system depends on multiple parameters, some of which are
adjustable. The properties of this system imply the existence of attractors. These attractors
can also be multiple. The above-mentioned authors associate the disease with special states
of GRNs. It is claimed that the trajectory, which reflects the current system state, will
tend to a “wrong” attractor. This can be improved by reasonably selected control means.
Mathematically, these means are imagined as the changing of the adjustable parameters
so that the trajectory changes its direction and goes to an attractor corresponding to a
normal state.

In this article, we consider models of GRN, consisting of ordinary differential equations.
We elaborate the scheme of control and managing trajectories in a GRN network. The
aim is to redirect a trajectory from an initial point to a targeted attractor. Examples for
two-dimensional systems are provided.

The problem of treating complex networks, and modeling them using mathematical
means and notions, is very important due to the existence of networks in nature and
technology. In our reference list, we have collected some sources, which are useful for first
addressing the problem. In [9], the main objectives for the study on the border of biology
and mathematics were discussed. As one of the main problems, the understanding of “the
structure and the dynamics of the complex intercellular web of interactions that contribute
to the structure and function of a living cell” was manifested. In [10], configurations of
networks are discussed, focusing on links and nodes overlapping and considering mostly
physical networks. In [11], the notion of “sensors” is introduced. It is noted that, in
most cases, not all parameters can be treated explicitly, and principles of management of
networks should be invented making use of only a group of available parameters. A notion
of an observable system is invented. An important problem of estimating the internal state
of a system from experimentally available data is discussed. In [12], the controllability of
complex networks is discussed. It starts with the declaration that “the ultimate proof of
our understanding of natural. . . systems is reflected in our ability to control them”. Let us
mention several remarks. It is noted that “a framework to control complex self-organized
systems is lacking”. It is known that genetic networks in a model are driven by systems
with sparse regulatory matrices W. The authors of [12] have considered this point. They
conclude that “sparse inhomogeneous networks, which emerge in many real complex
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systems, are the most difficult to control”. In many sources, the controllability of a system
is explained as “a dynamical system is controllable if, with a suitable choice of inputs, it
can be driven from any initial state to any desired final state in a finite time”. In our article,
the goal is moderate. We wish to indicate means that will help to redirect a trajectory
from an initial position in the phase space to a desired attractor, which is usually a stable
equilibrium. The book [13] in Part II provides a great amount of information on the topic of
Control of Nonlinear Systems. Several models of Control Design are proposed. Available
methods of Nonlinear Control Design are discussed, as well as Robust and Adaptive
controls, mathematical tools for control, and much more.

When considering genetic systems, the knowledge of the structure of phase space
and the influence of parameters on the phase space structure increase the effectiveness of
mathematical modeling significantly. We suggest that the geometrical approach, based on the
study of isoclines and their locations, is rather natural and may lead to deeply penetrating
into the essence of the problems’ results. We try to illustrate this point by our treatment of
a two-dimensional case. The results for higher dimensional systems need more facts and
examples. In the reference list, however, one can find articles, concerning genetic systems of
orders three, four, six [8,14,15], and even general ones, for arbitrary n [16,17].

We also consider systems of ordinary differential equations, which appear in the neu-
rodynamics theory (we call them ANN systems, from Artificial Neural Networks). These
systems naturally research in parallel to GRN systems, since both types of systems have
many similarities. There are, however, essential differences, such as lacking parameters and
the broader region of action in ANN differential equations, which have a similar structure
and exhibit similar behavior. The parameters and their meaning are different, however.
Therefore, the treatment of ANN model needs special attention. It is to be mentioned that
neural networks are typically not associated directly with differential equations, but with
difference equations or maps.

We focus on problems of control and management of GRN and ANN systems.
In order to become familiar with the topic, the resources [9–13,16–22] are useful.

2. GRN System

The dynamical system of the form

x′i = f (∑ wijxj − θi)vg − xivg − η (1)

is used to model genetic regulatory networks [2,5] and telecommunications networks [4]
as well. This system first appeared in [23]. The function f (z) is a sigmoid function, that
is, monotonically increasing from 0 to 1 as z changes from −∞ to +∞, having only one

point of inflexion, like the function
1

1 + e−µ z , vg is a parameter that controls deterministic

behavior and η is stochastic term. We neglect the stochastic term in (1), so η = 0. Neglecting
the stochastic term and assuming vg = 1, θi = θ for all i, we can write the dynamical system
in extended form 

x′1 = f (w11x1 + . . . + w1nxn − θ)− x1,
x′2 = f (w21x1 + . . . + w2nxn − θ)− x2,
. . . . . . . . . ,
x′n = f (wn1x1 + . . . + wnnxn − θ)− xn,

(2)

where wij are entries of the regulatory matrix W.
The equilibrium states can be detected from the system

x1 = f (x2 + x3 + . . . + xn − θ),
x2 = f (x1 + x3 + . . . + xn − θ),
. . . . . . . . . ,
xn = f (x1 + x2 + . . . + xn−1 − θ).

(3)
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The current state of the system is described by the vector x(t). Attractors of systems of
the form (2) were studied in [16,17].

General properties of systems (2) were studied and the results can be found in the
related literature [2,5,21].

Of the most importance to our analysis of these systems are two facts.
The unity cube Qn = {0 < xi < 1, i = 1, . . . , n} is an invariant domain for systems of

the form (2). The vector field on the border of Qn is directed inside. This can be understood
by the inspection of the vector field on the faces of Qn. The difference fi(. . .)− xi is either
positive or negative, depending on the choice of a face of Qn.

The second remarkable fact about systems of the form (2) is that their nullclines,
defined by (3), can intersect only within Qn. They do, and at least one equilibrium exists.
The total number of equilibria depends on the dimensionality and parameters of a system,
but it is finite.

3. Description of the State Space for System (2)

To be specific, consider the case example

x′1 =
1

1 + e−µ (w11x1+w12x2+...+w1nxn−θ)
− x1,

x′2 =
1

1 + e−µ (w21x1+w22x2+...+w2nxn−θ)
− x2,

. . .

x′n =
1

1 + e−µ (wn1x1+wn2x2+...+wnnxn−θ)
− xn,

(4)

which corresponds to the particular choice of f (z) = 1
1+e−µz . The system state is described by

the vector X(t) = (x1(t), . . . , xn(t)). Equilibria of the system are to be found from the system

x1 =
1

1 + e−µ (w11x1+w12x2+...+w1nxn−θ)
,

x2 =
1

1 + e−µ (w21x1+w22x2+...+w2nxn−θ)
,

. . .

xn =
1

1 + e−µ (wn1x1+wn2x2+...+wnnxn−θ)
.

(5)

Multiple critical points of different nature can occur, depending on the choice of
parameters µ and θ and elements of the regulatory matrix W. Even for n = 2 and simple W,
the number of isolated critical points can be up to nine.

3.1. Attractors

We will denote the attractors of the system (4) Ai. Each attractor has its basin of
attraction, denoted Bi. Each Bi is a subset of the phase space (x1, . . . , xn). If the current
system state X(t) is in Bi, then the system state vector X(t) will tend to Bi. Attractors
different of the equilibrium points are also available. Periodic attractors can be constructed
easily. Examples of periodic attractors for 2D, 3D, and 4D GRN systems can be found
in [14], as well as the discussion and related references. Periodic solutions in GRN systems
with steep sigmoid functions were studied in [24]. Chaotic attractors can appear in GRN
systems, but examples are rare.

Attractors can also be distinguished by the property to be “undesired” and “normal”.
In real substances, this may correspond to the disease state of an organism and, respectively,
to the healthy state [7]. Therefore, the problem of driving the system from the undesired
state (that is, in the basin of attraction of some equilibrium) to a normal state arises. This
is the problem of the controllability type that is generally difficult to solve. We propose
the schemes of how to drive the system to a normal state. We will also show how these
schemes work in a particular situation. This particularity is due to the specific regulatory
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matrix W, which corresponds to the case of the cross-activation network. The respective
regulatory matrix is of the form

W =


0 1 . . . 1
1 0 . . . 1

. . . . . . . . . . . .
1 1 . . . 0

. (6)

The system (4) then takes the form

x′1 =
1

1 + e−µ (x2+...+xn−θ)
− x1,

x′2 =
1

1 + e−µ (x1+x3+...+xn−θ)
− x2,

. . .

x′n =
1

1 + e−µ (x1+x2+...+xn−1−θ)
− xn.

(7)

3.2. Influence of Parameters on the Structure of the Phase Plane of 2D GRN Systems

The general system of ordinary differential equations which is often used to model
genetic networks, in case of the two dimensions (two-element network) is

x′1 =
1

1 + e−µ1 (w11x1+w12x2−θ1)
− v1x1,

x′2 =
1

1 + e−µ2 (w21x1+w22x2−θ2)
− v2x2.

(8)

It is a quasi-linear system, where the nonlinearity is represented by the logistic function
f (z) = 1/(1 + e−µz). Parameters µ and v are positive. Let us describe the influence of
parameters on the phase plane, and especially on the mutual location of isoclines. Isoclines
are curves, where x′1 or x′2 are constant. Especially useful are nullclines, which are given by
the relations 

0 =
1

1 + e−µ (w11x1+w12x2−θ1)
− v1x1,

0 =
1

1 + e−µ (w21x1+w22x2−θ2)
− v2x2.

(9)

Critical points (alternatively, equilibria) are solutions of the system of two equations (9).
Let us list the properties of the system (8). Some of these properties are evident. Proofs

of other properties are scattered over the related literature, mentioned above.

1. There is an invariant set Q2 = {0 < xi < 1/vi, i = 1, 2} with the following properties:

1a The vector field defined by the system (8) is directed inward on the border of Q2;
1b The nullclines (9) can intersect only in Q2;
1c The nullclines intersect at least once. The total number of intersections is finite.

For the 2D case, the maximal number of critical points is nine. For this, both
nullclines have to be Z-shaped;

2. By changing θi, the nullclines can be shifted; by changing θ1, the first nullcline can
be shifted in the vertical direction; by changing θ2, the second nullcline is moved
horizontally, preserving shape;

3. By changing µi, the shapes of the nullclines can be changed; for sufficiently large
values of µi, the three segments of a sigmoid curve, representing a nullcline, become
almost straight. In this case, the system (8) is almost piece-wise linear; for the study of
the case of piece-wise linear system consult [24];

4. By changing vi, the parallelepiped Q2 can be made stretched or compressed; for
v1 = v2 = 1 Q2, it is a unit square;
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5. Signs of elements of the regulatory matrix

W =

(
w11 w12
w21 w22

)
. (10)

are of great importance. The typical cases are

5a Activation: w11 ≥ 0, w22 ≥ 0, w21 > 0, w12 > 0;
5b Inhibition: w11 ≤ 0, w22 ≤ 0,
5c Mixed: w11 ≥ 0, w22 ≥ 0, w21w12 < 0;

More on the classification of systems by properties of the regulatory matrices can be
found in [19,25].

Remark 1. The system (8) with the matrix

W =

(
0 1
1 0

)
, (11)

where a > 0, b > 0 can have one, two, or three critical points. This depends on other parameters.
The case µ1 = mu2 = µ, θ1 = θ2 = theta was studied, and the region Ω was defined in the
(µ, θ)-plane, which decomposes the plane with respect to the number of critical points.

Remark 2. The system (8) with the matrix

W =

(
k −a
−a k

)
, (12)

where a > 0, k > 0 can have one stable critical point; then, (under k increasing) a stable periodic
trajectory, and then multiple critical points, of which some are attractive.

Remark 3. The conditions for the system (8) to have a single critical point were obtained in [26]. If
this point is non-attractive (a saddle, or a repelling one), then the system has a limit cycle (through
Andronov–Hopf bifurcation).

3.3. Inhibition Case in 2D GRN Systems

Consider the two-dimensional (2D abbreviated) system of ODE of the form (2)
x′1 =

1
1 + e−µ (w11x1+w12x2−θ1)

− x1,

x′2 =
1

1 + e−µ (w21x1+w22x2−θ2)
− x2.

(13)

Look at Figures 1–3. Calculations are performed and pictures are created using
Wolfram Mathematica tools, see Appendix A. Let the regularity matrix in (13) be

W =

(
0 −1
−1 0

)
. (14)

This corresponds to the inhibition case. The nullclines (red and black) intersect three
times. The green circle in Figure 1 corresponds to the current state of the 2D system. Due
to the vector field, the current state is in the basin of attraction of the lower critical point,
which is a stable node.
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0.0 0.5 1.0

0.0

0.5

1.0

Figure 1. The phase plane for system (13) with the matrix (14), µ1 = µ2 = 8, θ1 = −0.5, θ2 = −0.5.

0.0 0.5 1.0

0.0

0.5

1.0

Figure 2. The phase plane for system (13) with the matrix (14), µ1 = µ2 = 8, θ1 = 0.1, θ2 = −0.5.
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0.0 0.5 1.0

0.0

0.5

1.0

Figure 3. The phase plane for system (13) with the matrix (14), µ1 = µ2 = 8, θ1 = 0.01, θ2 = −0.9.

3.4. Controllability by Changing θ

The goal is to redirect the current trajectory, emanating from the green spot, to the
upper right critical point, which is conventionally the “normal” one. This can be achieved
by manipulating the adjustable parameter θ. Change θ1 from its current value −0.5 to the
value 0.1. This corresponds to the shift of the first nullcline (black one) down. As the result,
only one, the upper left, critical point remains, and their type is not changed. It is a stable
node. The effect of this action is seen in Figure 2. The flow of the vector field will lead
the green spot to the left upper, now unique, critical point, which is identified as “normal”
attractor. The goal is achieved, and the system will go to the right state.

3.5. Controllability by Changing Both θ

It is clear that changing both parameters θ in (13) will lead to the shifting of both
nullclines. The second nullcline (red one) can move in a horizontal direction. The change of
the parameters θ1 and θ2 from their current values to the values 0.01 and −0.9, respectively,
will lead to the configuration depicted in Figure 3. The selected trajectory will go to the
desired attractive critical point at the upper-left corner.

Proposition 1. In the case of inhibition (the regulatory matrix is (14)), any of the side critical
points can be made a unique global attractor by appropriate choices of the parameters θ.

4. Driving the System from One State to Another One—ANN Case

Systems of the form
x′1 = tanh(a11x1 + a12x2 + . . . + a1nxn)− x1,
x′2 = tanh(a21x1 + a22x2 + . . . + a2nxn)− x2,
. . .
x′n = tanh(an1x1 + an2x2 + . . . + annxn)− xn

(15)

arise in the theory of artificial neural networks ([27], Chapter 6). The hyperbolic tangent
function tanh z is a sigmoid function, but its range of values is (−1, 1). The invariant
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domain for the system (15) is the open cube Gn = {−1 < xi < 1, i = 1, 2, . . . , n}. The
nullclines are defined by the equations

0 = tanh(a11x1 + a12x2 + . . . + a1nxn)− x1,
0 = tanh(a21x1 + a22x2 + . . . + a2nxn)− x2,
. . .
0 = tanh(an1x1 + an2x2 + . . . + annxn)− xn

(16)

The cross-points of the nullclines are critical points (equilibria). At least one critical
point exists in Gn for the n-dimensional system (15). There is much similarity between
GRN systems and ANN systems.

Consider the two-dimensional version of (15){
x′1 = tanh(a11x1 + a12x2)− x1,
x′2 = tanh(a21x1 + a22x2)− x2

(17)

The nullclines of the system (17) are defined by the equations{
0 = tanh(a11x1 + a12x2)− x1,
0 = tanh(a21x1 + a22x2)− x2

(18)

Our goal is to establish the control over the ANN system. This system has less
parameters than the GRN system. The only possibility for the system (17) to be controlled
changing the parameters is to change the entries of the matrix

A =

(
a11 a12
a21 a22

)
. (19)

We will show that this is possible.
Look at Figures 4 and 5. Let the regularity matrix in (13) be

A =

(
1 1
1 1

)
. (20)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 4. The phase plane for the system (17) with the matrix (20).
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-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 5. The phase plane for the system (17) with the matrix (21).

The nullclines (red and black) intersect three times, as seen in Figure 4. Suppose that
the trajectory, corresponding to the current system state, tends to the upper-right critical
point. It is a stable node.

Controllability by Changing an Element of A

The goal is to redirect the current trajectory to the lower-left critical point, which is
also attractive. For this, we can only change some entries of the matrix A. Let the new
matrix be

A =

(
1 2
1 0.1

)
. (21)

Figure 5 shows a new configuration of nullclines. There is a unique critical point of
the type stable node. The trajectory will go to the desired attractor. The goal is achieved.

Consider a more complicated case. Let the coefficients of the system (17) be the entries
of the matrix

A =

(
3 1
3 6

)
. (22)

The nullclines and the vector field are depicted in Figure 6. There are nine critical
points, of which four are attractive. The green spots stand for the initial states of the
system (17). The trajectories starting from these points will go to the stable critical points
at the upper-left and lower-right locations. Let them be conventionally “undesired” ones.
The goal is to redirect them to the attractive critical points at the upper-right and lower-left
positions. This can be achieved by manipulating the elements of the matrix A. Let the
element “6” in (22) be changed to the value “4”. The new matrix is

A =

(
3 1
3 4

)
. (23)

The new configuration of nullclines is depicted in Figure 7. The green spots are
(approximately) on the border of the basins of attraction of the desired critical points. When
released, the trajectories will go to the new attractors at the upper-right and/or lower-left
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locations, depending on where they are exactly, in the basin of attraction of the upper
attractor, or in the basin of attraction of the opposite one. The goal is achieved.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 6. The phase plane for the system (17) with the matrix (22), where the green circles denote the
initial states.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 7. The phase plane for the system (17) with the matrix (23), where the green circles denote the
initial states.
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Proposition 2. The trajectories of the system (17) can be redirected from a given attractive critical
point to another one by changing the elements of the matrix A.

5. Conclusions

Control over GRN systems and ANN systems is possible if by control we mean
changing the properties of a system in the desired direction. In particular, it can be
implemented by manipulating the nullclines. This is easier for GRN systems since they
have more parameters. The most promising and geometrically understandable is changing
the θ parameters. In ANN systems, the nullclines can be manipulated by the elements of the
matrix A. Knowledge of the basins of attraction is a prerequisite for the implementation of
control. The bistable GRN system of differential equations modeling the activation case or
inhibition case can be driven from one attractor to another using several techniques. First,
elements of the regulatory matrix W can be changed appropriately. Second, the parameter
θ can control this process.

The following quote outlines possible further research in this direction. “Because of
the conceptual similarities between engineering and biological regulatory mechanisms, . . .
these tools are now being used to analyze biochemical and genetic networks” [28] (p. 1).
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Appendix A

The models are validated experimentally using Wolfram Mathematica programming.
The code for computing and visualization of examples follows.

a11=1;a12=1;a21=1;a22=1;b1=1;b2=1; f1[x_,y_]:=Tanh[a11 x+a12 y]-b1
x; f2[x_,y_]:=Tanh[a21 x+a22 y]-b2 y;
ContourPlot[{f1[x,y]==0,f2[x,y]==0,x==y, x==1, x==-1, y==1,
y==-1},{x,-1.4,1.4},{y,-1.4,1.4},ContourStyle->
{{Thick,Black},{Thick,Red},Dashed, Dashed, Dashed, Dashed,
Dashed},AxesLabel-> {Style[x,15],Style[y,15]}]

a11=1;a12=1;a21=5;a22=-5;b1=1;b2=1;
ContourPlot[{f1[x,y]==0,f2[x,y]==0,x==y, x==1, x==-1, y==1,
y==-1},{x,-1.4,1.4},{y,-1.4,1.4},ContourStyle->
{{Thick,Black},{Thick,Red},Dashed, Dashed, Dashed, Dashed,
Dashed},AxesLabel-> {Style[x,15],Style[y,15]}]

Clear[x,y];
a11=1;a12=2;a21=1;a22=0.1;b1=1;b2=1;\[CapitalTheta]1=0.1;
\[CapitalTheta]2=0.8;
\[Mu]1=1; \[Mu]2=1; f1[x_,y_]:=Tanh[\[Mu]1 (a11 x+a12
y-\[CapitalTheta]1)]-b1 x; f2[x_,y_]:=Tanh[\[Mu]2 (a21 x+a22
y-\[CapitalTheta]2)]-b2 y;
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nc2=ContourPlot[{f1[x,y]==0,f2[x,y]==0,x==y,x==1, x==-1, y==1,
y==-1},{x,-1.3,1.3},{y,-1.3,1.3},ContourStyle->
{{Thick,Black},{Thick,Red},Dashed,Dashed,Dashed,Dashed,Dashed},
AxesLabel->{Style[x,15],Style[y,15]}]

a11=3;a12=1;a21=3;a22=6;b1=1;b2=1; f1[x_,y_]:=Tanh[a11 x+a12 y]-b1
x; f2[x_,y_]:=Tanh[a21 x+a22 y]-b2 y;
nc1=ContourPlot[{f1[x,y]==0,f2[x,y]==0,x==y, x==1, x==-1, y==1,
y==-1},{x,-1.4,1.4},{y,-1.4,1.4},ContourStyle->
{{Thick,Black},{Thick,Red},Dashed, Dashed, Dashed, Dashed,
Dashed},AxesLabel-> {Style[x,15],Style[y,15]}]

sp1=StreamPlot[{ f1[x,y], f2[x,y]}, {x, -1.3, 1.3}, {y, -1.3, 1.3},
Axes -> True, Frame->True, AxesLabel -> {Style["x",Black, FontSize->
16],Style["y",Black,Italic,FontSize-> 16]}, StreamPoints ->40,
StreamStyle-> {Blue}]

Show[nc1, sp1]

a11=3;a12=1;a21=3;a22=4;b1=1;b2=1; f1[x_,y_]:=Tanh[a11 x+a12 y]-b1
x; f2[x_,y_]:=Tanh[a21 x+a22 y]-b2 y;
nc2=ContourPlot[{f1[x,y]==0,f2[x,y]==0,x==y, x==1, x==-1, y==1,
y==-1},{x,-1.4,1.4},{y,-1.4,1.4},ContourStyle->
{{Thick,Black},{Thick,Red},Dashed, Dashed, Dashed, Dashed,
Dashed},AxesLabel-> {Style[x,15],Style[y,15]}]

sp2=StreamPlot[{ f1[x,y], f2[x,y]}, {x, -1.3, 1.3}, {y, -1.3, 1.3},
Axes -> True, Frame->True, AxesLabel -> {Style["x",Black, FontSize->
16],Style["y",Black,Italic,FontSize-> 16]}, StreamPoints ->40,
StreamStyle-> {Blue}]

Show[nc2, sp2]
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Abstract

A dynamical system that arises in the theory of genetic networks, is studied. Attracting sets of a special
kind is the focus of the study. These attractors appear as combinations of attractors of lower dimensions,
which are stable limit cycles. The properties of attractors are studied. Visualizations and examples are
provided.
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1. Introduction

The theory of genetic regulatory networks (GRN in short) is at the core of modern biology. A lot of
information was collected and stored performing the experimental work. The data stored need registration,
classification, and usage for creating theories, managing, and employing them for practical purposes. As a
result of data collection and arrangement, the mathematical models are elaborated, which can be studied
independently. Their correspondence to real phenomena can be checked and the respective corrections can
be made. Fortunately, we have some dynamic mathematical models, that were probated and used, when
formulating aims and hypotheses. Let us mention the works [1], [14], [11], where real genetic networks
were considered concerning the treatment of leukemia. This disease was considered as an abnormality in
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the functioning of a genetic subsystem, which was described mathematically as a 60-dimensional system of
ordinary differential equations. This system has, possibly, rich dynamics, and several attractors, in the form
of stable equilibria, exist. The disease was interpreted as tending the current state of a genetic subsystem to a
“wrong” attractor. The recommendation for (mathematical) treatment of that was to change the adjustable
parameters to redirect the “wrong” trajectory to a normal attractor. This interpretation requires studying
in detail the structure of a genetic network and the reactions of the system to changes in parameters. Since
the problem of the mathematical treatment of so large system is not easy, we wish concentrate on possible
types of attractors, which can cause some periodic processes in GRN subsystems.

2. Periodic solution

For the second order ordinary differential equations (ODE) periodic solutions generate closed trajectories
in the phase plane. Any closed trajectory cannot intersect itself if an equation is autonomous. If another
second order equation is taken, which also has a periodic solution, generating its trajectory, both equations
can be combined into the fourth order system. If equations of harmonic oscillations are taken, namely,

x′′ + ω2
1x = 0, y′′ + ω2

2y = 0, (1)

and the ratio ω1
ω2

is the rational number, in a four-dimensional phase space complicated constructions can
emerge. Three the second order equations can be considered thus obtaining 6D-bodies, and so on.

If a general the first order system of ODE is considered, and if it can be decomposed into independent
subsystems, which have periodic solutions, the same phenomenon can be observed. If the resulting n-
dimensional constructions are obtained, and the system of ODE describes some notable processes, the
natural question arises: what is the meaning of these structures, do they bear some important information
about phenomena they are modeling, and how this information can be used to create more constructions,
not necessarily periodic, and what is their meaning.

The situation, just described, can occur, when considering the systems of ODE, written in vectorial form

X ′ = F (X)−X, (2)

where F (X) = (f1(X), . . . , fn(X)) with any fi being a sigmoidal function. Sigmoidal functions fi(z) are
monotonically increasing from zero to unity on the entire z-axis and have a single inflection point. One such
function is f(z) = 1/(1 + exp(−µ(z− θ))), where µ > 0 and θ are parameters. The above system then looks
as 

dx1
dt

=
1

1 + e−µ1(w11x1+w12x2+...+w1nxn−θ1)
− x1,

dx2
dt

=
1

1 + e−µ2(w21x1+w22x2+...+w2nxn−θ2)
− x2,

...
dxn
dt

=
1

1 + e−µn(wn1x1+wn2x2+...+wnnxn−θn)
− xn.

(3)

This system was used to model gene regulatory networks in a number of papers ([3], [5]), [8], [9]. Different
sigmoidal functions can be used also, for instance, the Hill’s function [14], the Gompertz function [12], which
supposedly model the behavior, organization and evolution of genetic networks. This system was used first
in [15] (see also [6]) to model a population of neurons.

3. System

We consider system (3). It has remarkable properties.

Proposition 3.1. The vector field, defined by the system (3), is directed inward the unit cube Qn on the
border ∂Qn.
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Proof. Consider the unit cubeQn = {x ∈ Rn : 0 ≤ x ≤ 1}, where the inequalities are understood component-
wise. The opposite faces of Qn along the x1-direction are defined by {x1 = 0}

⋂
Qn and {x1 = 1}

⋂
Qn. The

component x′1 = 1
1+e−µ1(w11x1+w12x2+...+w1nxn−θ1)

− x1 of the vector X ′ is positive at the hyperplane x′1 = 0,

due to positivity of the sigmoidal function f1. On the opposite face x1 = 1, the value of x′1 = f1 − x1
is negative, due to the value range (0, 1) of the sigmoidal function. A similar check can be made in the
directions of all axes xi, i = 2, . . . , n.

Proposition 3.2. The system has a critical point inside the domain Qn.

Proof. Critical points (also called equilibria) of the system (3) can be defined as solutions of the system

0 =
1

1 + e−µ1(w11x1+w12x2+...+w1nxn−θ1)
− x1,

0 =
1

1 + e−µ2(w21x1+w22x2+...+w2nxn−θ2)
− x2,

...

0 =
1

1 + e−µn(wn1x1+wn2x2+...+wnnxn−θn)
− xn.

(4)

In vectorial form
0 = F (X)−X, or X = F (X). (5)

The mapping M : X → F (X) satisfies the conditions of the Bohl-Brower fixed point theorem with respect
to the domain Qn, therefore a solution of the system (5) in Qn exists.

Remark 3.3. Notice, that a critical point need not be unique. In what follows, we will construct examples
with multiple critical points.

Proposition 3.4. The necessary and sufficient condition for the system (3) to have a periodic solution, is:
the boundary value problem (2),

X(a) = X(b) (6)

has a solution for some pair a < b.

Proof. Necessity. If a periodic solution X(t) with the minimal period T exists, then X(0) = X(T ) and the
boundary value problem (2), X(0) = X(T ) has a solution.

Sufficiency. Suppose, the BVP (2), (6) has a solution X(t). Then the correspondent trajectory in the
phase space Rn is closed. By autonomity of the system, the function X(t − (b − a)) is also a solution. Its
trajectory at t = b is at the same start point X(a) and goes the same way, as the first trajectory, due to the
uniqueness of a solution of the respective Cauchy problem. Hence X(t) is the periodic solution.

Remark 3.5. In the above proof (b − a) need not to be the minimal period, and the periodic solution may
be constant (then the trajectory is a point in the phase space).

Proposition 3.6. The system has an attractor in Qn.

Proof. This follows from the ‘trapping property’ of the set Qn. It is ‘positively invariant’ ([7, Definition
2, page 99]), that is, all trajectories starting at Qn stay there for future times. Then there exists ([7]) an
attractor, which is an invariant compact set, attracting trajectories from some neighborhood U.

Remark 3.7. Simple example of attractors are stable critical points and limit cycles.

4. Attractors

In this section we construct periodic attractors for two and three dimensional systems. Then we show
how these attractors can be used to construct the ones for higher dimensional systems. This approach can
be used without any restrictions on the dimensionality of a network. Afterward zero spaces can be filled
with non-zero elements thus obtaining more and more complicated structures.
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4.1. Attractors for 2D systems

Consider the two-dimensional system
x′1 =

1

1 + e−µ1(w11x1+w12x2−θ1)
− x1,

x′2 =
1

1 + e−µ2(w21x1+w22x2−θ2)
− x2,

(7)

where µ1 and µ2 are positive. It can be studied using the nullclines approach. Let us show how. Let the
regulatory matrix be of the form

W =

(
k a
b k

)
, (8)

and k > 0.

Proposition 4.1. Suppose
θ1 = 0.5(k + a), θ2 = 0.5(b+ k). (9)

Then the system 
x′1 =

1

1 + e−µ1(kx1+ax2−θ1)
− x1,

x′2 =
1

1 + e−µ2(bx1+kx2−θ2)
− x2

(10)

has the critical point at (0.5, 0.5).

Proof. The equalities 
0 =

1

1 + e−µ1(k0.5+a0.5−θ1)
− 0.5,

0 =
1

1 + e−µ2(b0.5+k0.5−θ2)
− 05

(11)

hold due to the specific values of θ1 and θ2.

Let us detect the type of the critical point (0.5, 0.5). For this, linearize the system at this point. One
gets {

u′1 = −u1 + µ1kg1u1 +µ1ag1u2,
u′2 = −u2 + µ2bg2u1 +µ2kg2u2.

(12)

where

g1 =
e−µ1(k0.5+a0.5−θ1)

[1 + e−µ1(b0.5+k0.5−θ1)]2
= 1/4,

g2 =
e−µ2(k0.5+a0.5−θ2)

[1 + e−µ2(b0.5+k0.5−θ2)]2
= 1/4.

The linear system (12) takes the form{
u′1 = −u1 + 0.25(µ1ku1 +µ1au2),
u′2 = −u2 + 0.25(µ2bu1 +µ2ku2).

(13)

The coefficient matrix for (13) is

A =

(
1
4µ1k − 1 1

4µ1a
1
4µ2b

1
4µ2k − 1

)
. (14)

The characteristic equation det(A− λE) = 0 (E is the unit matrix) takes the form

det(A− λE) = (14µ1k − (1 + λ))(14µ2k − (1 + λ))− 1
16µ1µ2ab

= (1 + λ)2 − (14k(µ1 + µ2)(1 + λ) + 1
16µ1µ2(k

2 − ab) = 0.
(15)
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The roots of the equation (15) are

λ = −1 +
1

8
k(µ1 + µ2)±

√
1

64
k2(µ1 − µ2)2 +

1

16
µ1µ2 a b. (16)

From this we obtain several useful assertions. Denote P = (0.5, 0.5).

Proposition 4.2. The necessary condition for the point P to be a focus is a b < 0.

Proposition 4.3. The sufficient conditions for the point P to be a focus are:

1
4k

2(µ1 − µ2)2 + µ1µ2 a b < 0,
−1 + 1

8k(µ1 + µ2) 6= 0.
(17)

Proposition 4.4. The sufficient condition for the point P to be a stable focus is

k < 4 min
{ 2

µ1 + µ2
,
−µ1µ2 a b
|µ1 − µ2|

}
. (18)

Proof. It can be verified that then the discriminant in (16) is negative and the real parts of λ-s in (16) are
also negative.

Proposition 4.5. The sufficient condition for the point P to be an unstable focus is

8

µ1 + µ2
< k <

−4µ1µ2 a b

|µ1 − µ2|
. (19)

Proof. The right sides in (18) and (19) are supposed to be +∞, if µ1 = µ2. The discriminant in (16) is
negative due to the second part of (19). The first inequality in (19) ensures that the real parts of λ-s in (16)
are positive.

Remark 4.6. For µ1 = µ2 = 4 the condition (19) reduces to 1 < k.

Theorem 4.7. Suppose the system is of the form (10), where k > 0, a b < 0 and θ1, θ2 are as in (9).
Suppose also that the point P is a single critical point of the type unstable focus.

Then there exists the limit cycle in Q2.

Proof. Consider the nullclines of the system (10). They intersect at the point P only. Generally, they look
(for matrices as in (8)) as shown in Figure 1. Our intent is to consider trajectories that start at one of
the nullclines and define the return map, which will be shown to have a fixed point. The vector field is
clock-wise rotating in a neighborhod of P , since it is a focus. By continuity, it is whirling in the whole Q2.
The nullclines divide the region Q2 into four sectors. In each of them, the vector field is rotating clock-wise
with the angular speed separated from zero, if outside of some vicinity of P. No trajectory escapes Q2. This
is a consequence of Proposition 3.1. Consider one of the nullclines. Let it be, for definiteness, the one going
in the horizontal direction, x2 = 1

1+e−µ2(bx1+kx2−θ2)
(the red one in Figure 1). Denote N1 its fragment inside

Q2. The point P belongs to N1. Trajectories, that start at N1 close enough to P , cross N1 after one rotation.
This cross-point is further from P , since the type of P is an unstable focus. Move along N1 towards the
upper left cross point, denoted S, with the segment B = {(0, x2) : 0 < x2 < 1} (it is the left border of Q2).
Such a point is unique since the vector field cannot be tangent to the border of Q2 by Proposition 3.1. (The
point S is marked by the small black square in Figure 1). Any trajectory starting at N1 rotates, governed
by the vector field in Q2, and returns back to N1 in a finite time (because there is no critical point other
than P ). Look at point S. Since it is the end point of N1, the trajectory starting at S, returns to N1 at
some interior point of N1. Due to the continuity of the return map, there exists a point on N1, which is a
fixed point of the return map. It corresponds to a closed trajectory.
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It was observed, that system suffers Andronov-Hopf bifurcation if w11 = w22 = k, w12w21 < 0. For k > 0
small the system has a unique critical point of the type stable focus. It is a single attractor. If k increases,
the real parts of characteristic numbers λ1,2 of a single critical point pass through zero and the type of a
critical point becomes unstable focus. The stable limit cycle emerges and now it is a single attractor of the
system. This transformation was described in the articles [13], [10].

Remark 4.8. There are conditions in [4] for the system

x′ = fµ(x, y),
y′ = gµ(x, y)

(20)

with a single critical point (x0, y0) at µ = µ0 to suffer the Hopf bifurcation. Let λ(µ0) be the characteristic
value of (x0, y0). These conditions are: 1) for some µ0 (do not mix with µ in our systems) the real part of
λ(µ0) is zero; 2) the imaginary part of λ(µ) is monotonically increasing in µ; 3) the expression a=1/16(fxxx+
fxyy + gxxy + gyyy) + 1/16ω(fxy(fxx + fyy) − gxy(gxx + gyy) − fxxgxx + fyygyy) computed at (x0, y0, µ0) is
negative (ω stands for the imaginary part of λ).

All three conditions fulfill for our system (10) and for the critical point (0.5, 0.5), which is supposed
to be a focus. The last expression, computed analytically in Wolfram Mathematica, is a=k((−0.0625a2 −
0.0625k2)µ31 + (−0.0625b2 − 0.0625k2)µ32), which is negative for µ1, µ2 positive.

Example 4.9. Consider system (10), where, µ1 = µ2 = 4, Θ1 = 0.5(w11 + w12), Θ2 = 0.5(w21 + w22),
w11 = w22 = 2.7, w12 = −w21 = 3. Since the conditions of Theorem 4.7 are fulfilled, limit cycle exists. It is
depicted in Figure 1 together with the nullclines and the vector field.

0.2 0.4 0.6 0.8 1.0 X1

0.2

0.4

0.6

0.8

1.0

X2

Figure 1: The limit cycle in system (10), W = {{2.7, 3}, {−3, 2.7}},
µ1 = µ2 = 4, θ1 = 2.85, θ2 = −0.15.

4.2. Attractors for 2D neuronal systems

Consider the system {
x′1 = tanh(w11x1 + w12x2)− x1,
x′2 = tanh(w21x1 + w22x2)− x2,

(21)
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where wij are parameters. Let the regulatory matrix be of the form

W =

(
k a
b k

)
, (22)

and a · b < 0, k > 0.
Then the system {

x′1 = tanh(kx1 + ax2)− x1,
x′2 = tanh(bx1 + kx2)− x2

(23)

has the critical point at (0, 0).
The nullclines are given by the equations{

x1 = tanh(kx1 + ax2),
x2 = tanh(bx1 + kx2).

(24)

There exists at least one critical point. For analysis of critical points, we need the linearized system (24)
for any equilibrium of the form (x∗1, x

∗
2). It is{
u′1 = −u1 + kg1u1 +ag1u2,
u′2 = −u2 + bg2u1 +kg2u2,

(25)

where
g1 = sech (kx∗1 + ax∗2)

2,

g2 = sech (bx∗1 + kx∗2)
2.

The characteristic equation det(A− λE) = 0 takes the form

det(A− λE) = (kg1 − (1 + λ))(kg2 − (1 + λ))− a b g1g2 =
= λ2 + (2− k(g1 + g2))λ+ (g1g2(k

2 − ab)− k(g1 + g2) + 1) = 0.
(26)

The roots of the equation (26) are

λ = −1 +
1

2
k(g1 + g2)±

√
1

4
k2(g1 − g2)2 + g1g2 a b. (27)

Example 4.10. Consider system (21), where w11 = w22 = 2.2, w12 = −1.3, w21 = 3. There exists the limit
cycle. It is depicted in Figure 2 together with the nullclines and the vector field.

4.3. Attractors for 3D systems

Immense now the above obtained limit cycle (Figure 1) into the 3D space. For this, consider the 3D
system 

x′1 =
1

1 + e−µ1(w11x1+w12x2+w13x3−θ1)
− x1,

x′2 =
1

1 + e−µ2(w21x1+w22x2+w23x3−θ2)
− x2,

x′3 =
1

1 + e−µ3(w31x1+w32x2+w33x3−θ3)
− x3,

(28)

where the regulatory matrix is

W =

 2.7 0 3
0 1 0
−3 0 2.7

 , (29)

µ1 = µ3 = 4, µ2 = 3, θ1 = 2.38, θ2 = 0.5, θ3 = −0.15. The x2-nullcline is a plane, which corresponds to a
unique root of the equation 1

1+e−µ2(x2−θ2)
= x2. The vector field is orthogonal to x2-nullcline and directed

towards it. The 2D periodic trajectory from Figure 1 appears as a periodic 3D trajectory, which can be
seen in Figure 3. This trajectory serves as a global attractor in Q2.

The resulting 3D limit cycle is depicted in Figure 3.
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X2

X1

-1.0 -0.5 0.0 0.5 1.0
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0.0

0.5

1.0

Figure 2: The limit cycle in system (21), W = {{2.2,−1.3}, {3, 2.2}}.

0.0
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X1
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1.0

X3

Figure 3: Limit cycle in system (28) with the matrix (29) and several trajectories,
µ1 = µ3 = 4, µ2 = 3, θ1 = 2.85, θ2 = 0.5, θ3 = −0.15.
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4.4. Attractors for 3D neuronal systems

Immense the above obtained limit cycle (Figure 2) into the 3D space. For this, consider the 3D system
x′1 = tanh(w11x1 + w12x2 + w13x3)− x1,
x′2 = tanh(w21x1 + w22x2 + w23x3)− x2,
x′3 = tanh(w31x1 + w32x2 + w33x3)− x3,

(30)

where the regulatory matrix is

W =

 2.2 −1.3 0
3 2.2 0
0 0 2.2

 . (31)

The 2D periodic trajectory from Figure 2 appears as a periodic 3D trajectory, which can be seen in
Figure 4.

The resulting 3D limit cycles are depicted in Figure 4.

-1.0

-0.5

0.0

0.5

1.0
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0.0
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-1.0

-0.5

0.0

0.5

1.0

X3

Figure 4: The limit cycles in system (30), W =
{{2.2,−1.3, 0}, {3, 2.2, 0}, {0, 0, 2.2}}.

4.5. Attractors for higher order systems

Consider system (3) for n = 5. Let the regulatory matrix be

W =


2.7 3 0 0 0
−3 2.7 0 0 0
0 0 2.7 0 3
0 0 0 1 0
0 0 −3 0 2.7

 , (32)

and µ1 = µ2 = µ3 = µ5 = 4, µ4 = 3, θ1 = θ3 = 2.85, θ2 = θ5 = −0.15, θ4 = 0.5.
It consists of two independent systems of order 2 and 3. Each of these systems has a limit cycle. The

resulting system of order five has an attractor, which is obtained by combination of two previosly constructed
limit cycles of orders 2 and 3, respectively. Let us call such an attractor periodic attractor.

We claim that the following is true.
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Theorem 4.11. For any dimension n the system (3) can have a periodic attractor.

Proof. Case n = 2. The limit cycle exists under certain conditions, Theorem 4.7.
Case n = 3. The 2D limit cycle, which exists under certain conditions, can be immersed in the three

dimensional space using the special construction described in the previous subsection. It becomes the 3D
limit cycle attracting trajectories in Q2. Other type 3D limit cycles can be found as well [2].

Case n = 4. Take two 2D systems, each possessing a limit cycle. Construct 4D regulatory matrix with
two 2D blocks on the main diagonal. Let T1 be the period of the first limit cycle, and T2 similarly. Then, if
iT1 = jT2, where i and j are arbitrary positive integers, these two limit cycles generate a periodic attractor
for 4D system, composed of two 2D systems.

Case n = 5. Combine 2D system with 3D one, assuming that both have limit cycles of periods T1 and
T2. If positive integers i and j exist such that iT1 = jT2, then a periodic attractor can be constructed for
5D system.

Case n = 6. Two combinations are possible, as 6 = 2 + 2 + 2, and then the periods Ti should relate as
iT1 = jT2 = mT3, where i, j,m are positive integers. Trivially, i = j = m = 1, T1 = T2 = T3.

And so on.
An alternative reasoning could be the following. It is possible to have a 2D system with the limit cycle

of period τ1 and a 3D system with the period τ2 such that 2τ1 = τ2. If n is even, compose big system of
n/2 two-dimensional ones, where all periods are τ1. If n is odd and n ≥ 5, compose big system of (n− 3)/2
two-dimensional ones and one three-dimensional system with the period τ2.

4.6. Attractors for 4D neuronal systems

Consider the 4D system
x′1 = tanh(w11x1 + w12x2 + w13x3 + w14x4)− x1,
x′2 = tanh(w21x1 + w22x2 + w23x3 + w24x4)− x2,
x′3 = tanh(w31x1 + w32x2 + w33x3 + w34x4)− x3,
x′4 = tanh(w41x1 + w42x2 + w43x3 + w44x4)− x4,

(33)

where the regulatory matrix is

W =


2.2 −1.3 0 0
3 2.2 0 0
0 0 4 −5
0 0 3 4

 . (34)

It consists of two independent 2D systems, and each have the limit cycle as a 2D attractor. The system (33)
has therefore a 4D period attractor. 3D projections of trajectories tending to this 4D period attractor are
depicted in Figures 5 to 7.

The result of Theorem 4.11 is valid also for n-dimensional systems of the form (33), since there are
examples of 2D and 3D neuronal systems, which have periodic attractors.

5. Example

Consider the system 

dx1
dt

=
1

1 + e−µ1(w11x1+w12x2+w13x3+w14x4−θ1)
− x1,

dx2
dt

=
1

1 + e−µ2(w21x1+w22x2+w23x3+w24x4−θ2)
− x2,

dx3
dt

=
1

1 + e−µ3(w31x1+w32x3+w33x3+w34x4−θ3)
− x3,

dx4
dt

=
1

1 + e−µ4(w41x1+w42x2+w43x3+w44x4−θ4)
− x4

(35)
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X1

X2

X3

Figure 5: Projection onto the subspace
(x1, x2, x3)

X4 X1

X2

Figure 6: Projection onto the subspace
(x1, x2, x4)

X2

X3

X4

Figure 7: Projection onto the subspace
(x2, x3, x4)

with the regulatory matrix

W =


1.2 1 0 0
−1 1.2 0 0
0 0 2.257 1
0 0 −1 2.257

 , (36)

the parameters µ1 = µ2 = µ3 = µ4 = 4, θ1 = 1.1, θ2 = 0.1, θ3 = 1.6285, θ4 = 0.6285. It is uncoupled. The
first 2D system has the stable periodic solution with the period τ1 ≈ 7.28. The second one has the periodic
solution with the period τ2 ≈ 22.74. So τ2 is very close to 3τ1. By small perturbation of the elements 1.2
in the matrix (36) these periods can be made such that the relation 3τ1 = τ2 holds exactly. Therefore the
period attractor exists for the 4D system (35).

3D projections of trajectories tending to this 4D period attractor are depicted in Figures 8 to 10.
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Figure 8: (x1, x2, x3)-projections of the 4D
attractor (red) and eleven trajectories (blue)
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Figure 9: (x1, x3, x4)-projections of the 4D
attractor (red) and several trajectories (blue)
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Figure 10: (x2, x3, x4)-projections of the 4D
attractor (red) and several trajectories (blue)

6. Conclusion

Closed figures can be obtained as attractors for systems of the form (3). They can be constructed
for any dimension. For higher dimensions (greater than five) they can be constructed in multiple ways.
Therefore, a periodic attractor of an arbitrary order can be obtained by combining periodic attractors of
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lower dimensionalities. If it is accepted, that systems (3) describe genetic networks adequately, GRN of any
size allows for periodic processes. The same is true for arbitrary dimensional systems of the form (33).
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Mathematical modelling of gene and neuronal
networks by ordinary differential equations

Diana Ogorelova

Summary. The system of ordinary differential equations that models a type of arti-
ficial networks is considered. The system consists of a sigmoidal function which depends
on linear combinations of the arguments minus the linear part. The linear combinations
of the arguments are described by the regulatory matrix W. For the three-dimensional
cases several types of matrices W are considered and behavior of solutions of the system
is analyzed.

MSC: 34C60, 34D45, 92B20

1 Introduction

In this article, we study Neural Networks, called also Artificial Neural Networks (ANN),
and their mathematical models, using ordinary differential equations. The motivation for
the study of ANN went from the attempts to understand the principles and organization
of the human brain. Understanding came that human brains work differently from digital
computers. Its effectiveness comes from high complexity, nonlinear mode of regulation,
and parallelism of actions. The elements of the human brain were called neurons. These
elements perform calculations still faster than the fastest digital computers. The hu-
man brain is able to perceive information about the environment in the form of images,
and, moreover, it can process the received information needed for interaction with the
environment.

At birth, the human brain has a ready structure for learning, which in familiar terms is
understood as experience. So the neural network is designed to model the way in which the
human brain solves usual problems and performs a particular task. A particular interest in
ANN stems from the fact that an important group of neural networks performs needed to
solve a problem computations through the process of learning. So, following [2], generally,
ANN can be imagined as a parallel distributed processor, consisting of simple processing
units, which is able to gain experiential knowledge and make it available for use.
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Artificial Neural Networks (ANNs) consist of a number of elements which are con-
nected. “Each neuron has a sigmoid transfer function, and a continuous positive and
bounded output activity that evolves according to weighted sums of the activities in the
networks. Neural networks with arbitrary connections are often called recurrent net-
works” [11]. No conditions are imposed to restrict synaptic values. There are two types
of recurrent neural networks: discrete time recurrent neural networks and continuous time
ones. The dynamics of the continuous time recurrent neural network with n units, can be
described by the system of ordinary differential equations (ODE)([4])

x′i = −bixi + fi(Σaijxj) + Ii(t), (1)

where xi is the internal state of the i-th unit, bi is the time constant for the i-th unit, aij

are connection weights, Ii(t) is the input to the i-th unit, and fi(Σaijxj) is the response
function of the i-th unit. Usually f is taken as a sigmoidal function. There are particular
response functions that are non-negative. For instance, functions fi(z) = (1 + exp(µi(z−
θi))

−1 were used in [1]. More general cases can be modeled by the system using the
function fi(z) = tanh(aiz − θi), which takes values in the open interval (−1, 1). If the
recurrent neural networks without input are considered, the system

x′i = fi(Σ(aijxj − θi))− bixi (2)

can be considered.
The mathematical model using ordinary differential equations, is





dx1

dt
= 2

1

1 + e(a11x1+a12x2+a13xn−θ1)
− 1− b1x1,

dx2

dt
= 2

1

1 + e(a21x1+a22x2+aw23xn−θ2)
− 1− b2x2,

dx3

dt
= 2

1

1 + e(a31x1+a32x2+a33x3−θ3)
− 1− b3x3,

(3)

The same system can be written as ([3])




dx1

dt
= tanh(a11x1 + a12x2 + a13x3 − θ1)− b1x1,

dx2

dt
= tanh(a21x1 + a22x2 + a23x3 − θ2)− b2x2,

dx3

dt
= tanh(a31x1 + a32x2 + a33x3 − θ3)− b3x3,

(4)

The elements of this 3D network are called neurons. The connections between them
are synapses (or nerves). There is an algorithm that describes how the impulses are
propagated through the network. In the above model this algorithm is encoded by the
matrix

W =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 . (5)
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Each neuron accepts signals from others and produces a single output. The extent to
which the input of neuron i is driven by the output of neuron j is characterized by its
output and synaptic weight aij. The dynamic evolution leads to attractors of the system
(4) and it was experimentally observed in neural systems. In theoretical modeling the
emphasis is put on the attractors of a system. We wish to study them for the system (4).

Similar systems arise in the theory of genetic regulatory networks. The difference is
that the nonlinearity is represented by a positive valued sigmoidal functions. One of such
systems is 




dx1

dt
=

1

1 + e−µ1(a11x1+a12x2+a13xn−θ1)
− b1x1,

dx2

dt
=

1

1 + e−µ2(a21x1+a22x2+a23xn−θ2)
− b2x2,

dx3

dt
=

1

1 + e−µ3(a31x1+a32x2+a33x3−θ3)
− b3x3.

(6)

Systems of the form (6) were studied before by many authors. The interested reader may
consult the works ( [5], [6], [7], [9], [10], [13], [14]). Similar systems appear in the theory
of telecommunication networks ([8]).

In this article we study the different dynamic regimes for the system (4) which can be
observed under various conditions. In particular, we first speak about critical points in the
system (4) and evaluate the number of them. Then we focus on periodic regimes, study
their attractiveness for other trajectories. This can be done, under some restrictions,
for systems of relatively high dimensionality. Also the evidences of chaotic behavior are
presented.

2 Preliminary results

2.1 Invariant set

Consider 3D system (4).

Proposition 2.1. System (4) has an invariant set Q3 = {−1
b1

< x1 < 1
b1

, −1
b2

< x2 < 1
b2

,
−1
b3

< x3 < 1
b3
}.

Proof. By inspection of the vector field generated by the system (4) on the opposite
faces of the three-dimensional cube Q3. Notice, that the value range for the function tanh
z is (−1, 1). ¤
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2.2 Nullclines

The nullclines for the system are defined by the relations





x1 =
1

b1

tanh(a11x1 + a12x2 + a13x3 − θ1),

x2 =
1

b2

tanh(a21x1 + a22x2 + a23x3 − θ2),

x3 =
1

b3

tanh(a31x1 + a32x2 + a33x3 − θ3).

(7)

Example 2.2.
Consider the system with the matrix

W =




1 2.5 0
−2.5 1 0

0 0 1


 (8)

and b1 = b2 = b3 = 1, θ1 = θ2 = 0.03, θ3 = 0.3.

-1.0

-0.5

0.0

0.5

1.0

X1
-1.0

-0.5
0.0

0.5
1.0

X2

-1.0

-0.5

0.0

0.5

1.0

X3

Fig. 2.1.Nullclines for system (4) ( x1 - red, x2 - green, x3 - blue).
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2.3 Critical points

The critical points for the system (4) are the cross points of the nullclines. They can be
found from the system





x1 − 1

b1

tanh(a11x1 + a12x2 + a13x3 − θ1) = 0,

x2 − 1

b2

tanh(a21x1 + a22x2 + a23x3 − θ2) = 0,

x3 − 1

b3

tanh(a31x1 + a32x2 + a33x3 − θ3) = 0.

(9)

Proposition 2.2.
All critical points are in the invariant set.

The nullclines are located in the sets {−1
b1

< x1 < 1
b1

, −1
b2

< x2 < 1
b2

, −1
b3

< x3 < 1
b3
}

rspectively and these sets intersect by the invariant set Q3 only.¤

Proposition 2.3.
At least one critical point exists.

The invariant set Q3 may be considered as a topological ball. Since the vector field on
the border is directed inward, Q3 is mapped into itself continuously. Then there exists a
fixed point of the mapping Q3 to Q3, defined by the system (7). ¤

Remark. The number of critical points may be greater, up to 27, but finite.
Remark. Both assertions 2.3 and 2.3 are valid for the n-dimensional case also.

Example 2.3.
Consider the system (4) with the matrix

W =




1 2 0
−2 1 0
0 0 1


 (10)

and b1 = b2 = b3 = 1, θ1 = 0.8, θ2 = 0.3, θ3 = 0.2. There is one critical point
(−0.162; 0.399; −0.731).
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Fig. 2.2.Nullclines for system (4) ( x1 - red, x2 - green, x3 - blue).

Example 2.4.
Consider example of multiple critical points and the system (4) with the matrix

W =




1.5 2 0
−2 1.5 0
0 0 1.5


 (11)

and b1 = b2 = b3 = 1, θ1 = 0.7, θ2 = 0.3, θ3 = 0.01.
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X2 -1.0
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0.0
0.5

1.0
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Fig. 2.3.Nullclines for system (4) ( x1 - red, x2 - green, x3 - blue).

There are three critical points (−0.067; 0.367; 0.854), (−0.067; 0.367; 0.020) and
(−0.067; 0.367; −0.863).
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2.4 Linearization at a critical point

The linearized system for any critical point (x∗1, x
∗
2, x

∗
3) is





u′1 = −b1u1 + a11g1u1 + a12g1u2 + a13g1u3,
u′2 = −b2u2 + a21g2u1 + a22g2u2 + a23g2u3,
u′3 = −b3u3 + a31g3u1 + a32g3u2 + a33g3u3,

(12)

where

g1 =
4e−2(a11x∗1+a12x∗2+a13x∗3−θ1)

[1 + e−2(a11x∗1+a12x∗2+a13x∗3−θ1)]2
, (13)

g2 =
4e−2(a21x∗1+a22x∗2+a23x∗3−θ2)

[1 + e−2(a21x∗1+a22x∗2+a23x∗3−θ2)]2
, (14)

g3 =
4e−2(a31x∗1+a32x∗2+a33x∗3−θ3)

[1 + e−2(a31x∗1+a32x∗2+a33x∗3−θ3)]2
. (15)

One has

A− λI =

∣∣∣∣∣∣

a11g1 − b1 − λ a12g1 a13g1

a21g2 a22g2 − b2 − λ a23g2

a31g3 a32g3 a33g3 − b3 − λ

∣∣∣∣∣∣
(16)

and the characteristic equation for b1 = b2 = b3 = 1 is

det|A− λI| = −Λ3 + (a11g1 + a22g2 + a33g3)Λ
2+

+[g1g2(a12a21 − a11a22) + g1g3(a13a31 − a11a33)+
+g2g3(a23a32 − a22a33)]Λ+
+g1g2g3(a11a22a33 + a12a23a31 + a13a21a32−
−a11a23a32 − a12a21a33 − a13a22a31) = 0,

(17)

where Λ = λ + 1.

3 Inhibition-activation

Consider the system





x′1 = tanh(a12x2 + a13x3 − θ1)− x1,
x′2 = tanh(a21x1 + a23x3 − θ2)− x2,
x′3 = tanh(a31x1 + a32x2 − θ3)− x3.

(18)

where a12, a13, a23 are negative, a21, a31, a32 are positive.
We consider the specific case

W =




0 −1 −1
1 0 −1
1 1 0


 (19)

θ1 = θ2 = θ3 = θ. The system then has a single critical point. Introduce
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where

g1 =
4e−2(−x2−x3−θ)

[1 + e−2(−x2−x3−θ)]2
, (20)

g2 =
4e−2(x1−x3−θ)

[1 + e−2(x1−x3−θ)]2
, (21)

g3 =
4e−2(x1+x2−θ)

[1 + e−2(x1+x2−θ)]2
. (22)

Values of gi are in the range (0, 1). The linearized system now is





u′1 = −u1 − g1u2 − g1u3,
u′2 = −u2 + g2u1 − g2u3,
u′3 = −u3 + g3u1 + g3u2,

(23)

The characteristic equation can be obtained from

A− λI =

∣∣∣∣∣∣

−1− λ −g1 −g1

g2 −1− λ −g2

g3 g3 −1− λ

∣∣∣∣∣∣
(24)

and
det|A− λI| = −λ3 − 3λ2 + (g1g2 + g1g3 + g2g3 − 3)λ
+(g1g2 + g1g3 + g2g3 − 1) = 0.

(25)

The characteristic numbers are




λ1 = −1,
λ2 = −1−√g1g2 + g1g3 + g2g3 i,
λ3 = −1 +

√
g1g2 + g1g3 + g2g3 i.

(26)

Proposition 3.1. A critical point of the system (18) under the above conditions
is 3D-focus, that is, the following is true: there is 2D-subspace with a stable focus and
attraction in the remaining dimension.

4 Systems with stable periodic solutions. Andronov

- Hopf type bifurcations.

4.1 2D case

We first study the second order system




dx1

dt
= tanh(kx1 + bx2 − θ1)− b1x1,

dx2

dt
= tanh(ax1 + kx2 − θ2)− v2x2,

(27)

where b = −a = 2, and k > 0 is the parameter.
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Choose k small enough, so that a unique critical point be a stable focus. Then increase
k until the stable focus turns to unstable one. Then the limit cycle emerges, surrounding
the critical point. This is called Andronov - Hopf bifurcation for 2D systems.

Example 4.1.
Consider the system (27) with the matrix

W =

(
k 2
−2 k

)
(28)

and k = 0.7, b1 = b2 = 1, θ1 = 0.2, θ2 = 0.4.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x1

x2

Fig. 4.1.Nullclines and vector feld for system (27) ( x1 - blue, x2 - red).

There is one critical point the stable focus.
If choose k the stable focus turns to unstable one. Then the limit cycle emerges,

surrounding the critical point.

Example 4.2.
Consider the system (27) with the matrix

W =

(
k 2
−2 k

)
(29)

and k = 1.2, b1 = b2 = 1, θ1 = 0.2, θ2 = 0.4.
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Fig. 4.2.The limit cycle in system (27) ( x1 - blue, x2 - red).

4.2 3D case

Consider now the 3D system with the matrix

W =




k 0 b
0 a22 0
a 0 k


 (30)

where a, b, k are as in 2D system (27). The second nullcline is defined by the relation

x2 =
1

b2

tanh(a22x2 − θ2). (31)

Choose the parameters so that the equation (31) has three roots. Then the second nullcline
is a union of three parallel planes.

Example 4.3.
Consider picture of nullclines. There are three periodic solutions in system (31) with

the matrix

W =




1.5 0 2
0 2.7 0
−2 0 1.5


 (32)

and b1 = b2 = b3 = 1, θ1 = 0.2, θ2 = 0, θ3 = 0.3.
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Fig. 4.3.The nullclines of the system (31) with the regulatory matrix (32).
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Fig. 4.4.Three periodic solutions of the system (31) with the regulatory matrix (32).

5 Conclusions

The behavior of solutions of systems of the form (3) strongly depends on the structure of
weight matrix W. Any system (3) has at least one critical point in the region D = (−1

b1
, 1

b1
)×

(−1
b2

, 1
b2

)×(−1
b3

, 1
b3

). No trajectory of the system (3) can escape this region. Multiple critical
points are possible. Stable nodes, stable and unstable 3D-focuses and saddle points can
occur. Systems with a triangular matrix W cannot have focuses. Inhibition-activation
systems of Section 3 have a critical point that is a focus. The coefficient conditions are
possible for a critical point to be a focus. No attracting critical points may exist in D.
The trajectories tend then to a pattern of regular form. No chaotic behavior was observed
yet.

Acknowledgements ESF Project No.8.2.2.0/20/I/003 ” Strengthening of Profes-
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D. Ogorelova. Gēnu un neironu t̄ıklu matemātiskā modelēšana ar parastiem
diferenciālvienādojumiem.
Anotācija. Tiek aplūkota parasto diferenciālvienādojumu sistēma, kas modelē maksl̄ıgo
t̄ıklu veidu. Sistēma sastāv no sigmoidālas funkcijas, kas ir atkar̄ıga no lineārām argu-
mentu kombinācijām mı̄nus lineārā daļa. Argumentu lineārās kombinācijas ir aprakst̄ıtas
ar regulējošo matricu W. Tr̄ısdimensiju gad̄ıjumiem tiek aplūkoti vairāki matricu veidi W
un analizēta sistēmas risinājumu uzved̄ı ba.

Ä. Îãîðåëîâà. Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå ãåííûõ è íåéðîííûõ
ñåòåé îáûêíîâåííûìè äèôôåðåíöèàëüíûìè óðàâíåíèÿìè.
Àííîòàöèÿ. Ðàññìîòðåíà ñèñòåìà îáûêíîâåííûõ äèôôåðåíöèàëüíûõ óðàâíåíèé,
ìîäåëèðóþùàÿ ðàçíîâèäíîñòü èñêóññòâåííûõ ñåòåé. Ñèñòåìà ñîñòîèò èç ñèãìîèäàëüíîé
ôóíêöèè, êîòîðàÿ çàâèñèò îò ëèíåéíûõ êîìáèíàöèé àðãóìåíòîâ çà âû÷åòîì ëèíåéíîé
÷àñòè. Ëèíåéíûå êîìáèíàöèè àðãóìåíòîâ îïèñûâàþòñÿ ðåãóëèðóþùåé ìàòðèöåé W .
Äëÿ òðåõìåðíûõ ñëó÷àåâ ðàññìîòðåíî íåñêîëüêî òèïîâ ìàòðèö W è ïðîàíàëèçèðîâàíî
ïîâåäåíèå ðåøåíèé ñèñòåìû.
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Abstract: In the theory of gene networks, the mathematical apparatus that uses dynamical systems
is fruitfully used. The same is true for the theory of neural networks. In both cases, the purpose
of the simulation is to study the properties of phase space, as well as the types and the properties
of attractors. The paper compares both models, notes their similarities and considers a number of
illustrative examples. A local analysis is carried out in the vicinity of critical points and the necessary
formulas are derived.

Keywords: neuronal networks; dynamical systems; artificial networks; critical points; attractors

MSC: 34C60; 34D45; 92B20

1. Introduction

In this article, we study Neural Networks, called also Artificial Neural Networks
(ANN), and their mathematical models, using ordinary differential equations. The mo-
tivation for the study of ANNs came from attempts to understand the principles and
organization of the human brain. Understanding came that human brains work differ-
ently from digital computers. Their effectiveness comes from high complexity, nonlinear
modes of regulation, and parallelism of actions. The elements of the human brain were
called neurons.

These elements still perform calculations faster than the fastest digital computers.
The human brain is able to perceive information about the environment in the form of
images and, moreover, it can process the received information needed for interaction with
the environment.

At birth, the human brain has a ready structure for learning which, in familiar terms,
is understood as experience. So, the neural network is designed to model the way in which
the human brain solves usual problems and performs a particular task. A particular interest
in ANN stems from the fact that an important group of neural networks is needed to
solve a problem computations through the process of learning. So, following [1], an ANN
can generally be imagined as a parallel distributed processor, consisting of separate units,
which is able to analyze experimental data and prepare them for use.

Many natural processes involve networks of elements that affect each other following
a general pattern of conditions and the updating rules for any elements. Both genomic
networks and neuronal networks are of this kind. In mathematical models of networks of
both types, the regulatory effect of one element to the outputs of other elements is defined
by a weight matrix. Therefore, the models describing the evolution of these networks
have a lot in common. But, there are also differences. This paper compares models using
systems of ordinary differential equations. To distinguish between these systems, we
use the designations GRN system and ANN system. At the same time, we realize that
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the term ANN system has too general a meaning. An ANN system in the established
sense is understood as a network that operates according to certain rules and is focused
on performing certain tasks. At the same time, the networks undergo training and thus
improve their qualities. This article looks at neural networks from a different point of
view. We are interested in the behavior of systems of both types for different forms of
interaction of elements. The structure of both systems assumes the presence of attractors
that determine future states. The description and comparison of possible attractors for the
systems of both types is our result.

ANNs are made up of many interconnected elements. Weighted signals from different
elements are received by a separate element and processed. A positive signal is understood
as an excitatory connection, while negative one means an inhibitory connection. The
received signals are linearly summed and modified by a nonlinear sigmoidal function
which is called an activation one. The activation function controls the amplitude of an
output. “Each neuron has a sigmoid transfer function, and a continuous positive and
bounded output activity that evolves according to weighted sums of the activities in
the networks. Neural networks with arbitrary connections are often called recurrent
networks” [2]. The dynamics of the continuous time recurrent neural network with n units,
can be described by the system of ordinary differential equations (ODE) ([3])

x′i = −bixi + fi(Σaijxj) + Ii(t), (1)

where xi is the internal state of the i-th unit, bi is the time constant for the i-th unit, aij are
connection weights, Ii(t) is the input to the i-th unit, and fi(Σaijxj) is the response function
of the i-th unit. Usually, f is taken as a sigmoidal function. There are particular response
functions that are non-negative. For instance, functions fi(z) = (1 + exp(µi(z − θi))

−1

were used in [4]. More general cases can be modeled by the system using the function
fi(z) = tanh(aiz − θi), which takes values in the open interval (−1, 1). If the recurrent
neural networks without input are considered, the system

x′i = fi(Σ(aijxj − θi))− bixi (2)

can be considered.
Applications of Artificial Neural Networks are multiple. They can be used in dif-

ferent fields. These fields can be categorized as function approximations, including time
series prediction and modeling; pattern and sequence recognition, novelty detection and
sequential decision making; and data processing, including filtering and clustering. For
applications in Machine Learning (ML), Deep Learning and related problems, consult the
review article [5]. For neuroscience applications and their relation to ML, and machine
learning using biologically realistic models of neurons to carry out the computation, con-
sider the review [6]. The problems of pattern recognition by ANNs, including applications
in manufacturing industries, were studied and analyzed in the review paper [7]. In the
paper [8], the ANN approach is applied for the study of a genetic system.

In this article, we mainly study properties of the mathematical model of a three-
dimensional ANN, but part of our results will refer to two-dimensional or, more generally,
to n-dimensional networks. In particular, we provide information on the types of possible
attractors, and their birth and evolution under changes in multiple parameters. The
asymptotic properties of the system are important for prediction of future states. This, in
turn, can provide instruments for control and management of the modeling network. We
use analytical tools for the study of the phase space and its elements. A set of formulas is
obtained for the local analysis near equilibria. The necessary data for the analysis were
collected by conducting computational experiments and constructing several examples. A
broader study involves examining the model and interpreting the findings for the actual
process being modeled. Examples of this approach are the works [9,10].

Let us describe the structure of the paper. The Problem formulation section provides
the necessary material for the study. The Preliminary results section describes some basic
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properties of the main systems of ordinary differential equations. It deals also with technical
details concerning nullclines, critical points, local analysis by linearization, and some special
cases. The next two sections concern some particular but important cases. The systems
possessing critical points of the type focus, and systems exhibiting the inhibition-activation
behavior, are treated. Both types of systems can have periodic solutions, and that means
that cyclic processes can occur in the modeled network. The system of the special triangular
structure is analyzed in Section 6. It is convenient for analysis and the main conclusions can
be transferred to systems of arbitrary dimensions. The process of birth of stable periodic
trajectories from stable critical points of the type focus is considered in Section 7. The
mechanism of the Andronov–Hopf bifurcation is illustrated for two-dimensional and three-
dimensional neuronal systems. As a by-product, an example of a 3D system that has three
limit cycles is constructed. Some suggestions on the management of neuronal systems are
provided in Section 7. The possibility of effectively changing the properties of the system,
and therefore to partially controlling the network in question, is emphasized. The last
section summarizes the results obtained so far, and outlines further studies in this direction.

2. Problem Formulation

The mathematical model using ordinary differential equations, is

dx1

dt
= 2

1
1 + e−2(a11x1+a12x2+a13x3−θ1)

− 1 − b1x1,

dx2

dt
= 2

1
1 + e−2(a21x1+a22x2+aw23x3−θ2)

− 1 − b2x2,

dx3

dt
= 2

1
1 + e−2(a31x1+a32x2+a33x3−θ3)

− 1 − b3x3.

(3)

The same system can be written as ([11])

dx1

dt
= tanh(a11x1 + a12x2 + a13x3 − θ1)− b1x1,

dx2

dt
= tanh(a21x1 + a22x2 + a23x3 − θ2)− b2x2,

dx3

dt
= tanh(a31x1 + a32x2 + a33x3 − θ3)− b3x3,

(4)

since

2
1

1 + e−2z − 1 =
1 − e−2z

1 + e−2z = − e−2z − 1
e−2z + 1

= − tanh(−z) = tanh(z).

The elements of this 3D network are called neurons. The connections between them are
synapses (or nerves). There is an algorithm that describes how the impulses are propagated
through the network. In the above model, this algorithm is encoded by the matrix

W =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

. (5)

Each neuron accepts signals from others and produces a single output. The extent to
which the input of neuron i is driven by the output of neuron j is characterized by its output
and synaptic weight aij. The dynamic evolution leads to attractors of the system (4), and it
was experimentally observed in neural systems. In theoretical modeling, the emphasis is
put on the attractors of a system. We wish to study them for System (4).
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Similar systems arise in the theory of genetic regulatory networks. The difference is
that the nonlinearity is represented by a positive valued sigmoidal functions. One of such
systems is 

dx1

dt
=

1
1 + e−µ1(a11x1+a12x2+a13x3−θ1)

− b1x1,

dx2

dt
=

1
1 + e−µ2(a21x1+a22x2+a23x3−θ2)

− b2x2,

dx3

dt
=

1
1 + e−µ3(a31x1+a32x2+a33x3−θ3)

− b3x3.

(6)

Notice that System (3), and therefore also System (4), can be obtained from System (6),
where µi = 2, i = 1, 2, 3, by two arithmetic operations, namely multiplication of the
nonlinearity in (6) by 2 and subtracting 1. This changes the range of values in (3) to (−1, 1).

Systems of the form (6) were studied before by many authors. The interested reader
may consult the works ([12–20]). Similar systems appear in the theory of telecommunication
networks ([21]).

In this article, we study the different dynamic regimes for System (4) which can be
observed under various conditions. In particular, we first speak about critical points in
System (4) and evaluate the number of them. Then, we focus on periodic regimes, study
their attractiveness for other trajectories. This can be performed, under some restrictions,
for systems of relatively high dimensionality. Also, the evidences of chaotic behavior
are presented.

3. Preliminary Results

This section contains the description of basic properties of systems under consideration,
and provides information about nullclines, critical points, and their role in the study.

3.1. Invariant Set

Consider the 3D system (4).

Proposition 1. System (4) has an invariant set Q3 = {−1/b1 < x1 < 1/b1, −1/b2 < x2 <
1/b2, −1/b3 < x3 < 1/b3}.

Proof. By inspection of the vector field generated by System (4) on the opposite faces of the
three-dimensional cube Q3. Notice, that the value range for the function tanh z is (−1, 1). □

3.2. Nullclines

The nullclines for the system are defined by the relations

x1 =
1
b1

tanh(a11x1 + a12x2 + a13x3 − θ1),

x2 =
1
b2

tanh(a21x1 + a22x2 + a23x3 − θ2),

x3 =
1
b3

tanh(a31x1 + a32x2 + a33x3 − θ3).

(7)

Example 1. Consider the system with the matrix

W =

 1.2 1.5 0
−1.5 1.2 0

0 0 1.2

 (8)

and b1 = b2 = b3 = 1, θ1 = θ2 = 0.5, θ3 = 1.
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The three nullclines for system (4) with matrix (8) are depicted in Figure 1.

-1.0

-0.5

0.0

0.5

1.0

X1

-1.0

-0.5

0.0

0.5

1.0

X2

-1.0
-0.5

0.0
0.5

1.0
X3

Figure 1. The nullclines for System (4) with Matrix (8) ( x1—red, x2—green, x3—blue).

3.3. Critical Points

The critical points, which are also called the equilibria, can be obtained from System (4).
Geometrically, they are the cross points of the nullclines. The nullclines are defined by
the relations 

x1 −
1
b1

tanh(a11x1 + a12x2 + a13x3 − θ1) = 0,

x2 −
1
b2

tanh(a21x1 + a22x2 + a23x3 − θ2) = 0,

x3 −
1
b3

tanh(a31x1 + a32x2 + a33x3 − θ3) = 0.

(9)

Proposition 2. All critical points are in the invariant set.

The nullclines are located in the sets {−1/b1 < x1 < 1/b1, −1/b2 < x2 < 1/b2,
−1/b3 < x3 < 1/b3}, respectively, and these sets intersect by the invariant set Q3 only.

Proposition 3. At least one critical point exists.

The invariant set Q3 may be considered as a topological ball. Since the vector field
on the border is directed inward, Q3 is mapped into itself continuously. The continuous
contraction mapping Q3 to Q3 has a fixed point. Any fixed point is a solution of the
system (7).

Remark 1. The number of critical points may be greater, up to 27, but finite.

Remark 2. Both assertions 2 and 3 are valid for the n-dimensional case also.

Example 2. Consider System (4) with the matrix

W =

 1.2 2 0
−2 1.2 0
0 0 1.2

 (10)

and b1 = b2 = b3 = 1, θ1 = 0.7, θ2 = 0.3, θ3 = 0.25. There is one critical point (−0.122; 0.362;
0.640).
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The three nullclines for system (4) with matrix (10) are depicted in Figure 2.
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-0.50.00.51.0

x2

-1.0
-0.5

0.0
0.5

1.0

x3

Figure 2. The nullclines for system (4) ( x1—red, x2—green, x3—blue) with Matrix (10).

Example 3. Consider example of multiple critical points and the system (4) with the matrix

W =

 1.2 2 0
−2 1.2 0
0 0 1.2

 (11)

and b1 = b2 = b3 = 1, θ1 = 0.7, θ2 = 0.3, θ3 = 0.01.

The three nullclines for system (4) with matrix (11) are depicted in Figure 3.
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Figure 3. The nullclines for System (4) ( x1—red, x2—green, x3—blue) with Matrix (11).

There are three critical points (−0.122; 0.362; 0.640), (−0.122; 0.362; 0.050) and (−0.122;
0.362; −0.675).

3.4. Linearization at a Critical Point

Let (x∗1 , x∗2 , x∗3) be a critical point. The linearization around it is given by the system
u′

1 = −b1u1 + a11g1u1 + a12g1u2 + a13g1u3,
u′

2 = −b2u2 + a21g2u1 + a22g2u2 + a23g2u3,
u′

3 = −b3u3 + a31g3u1 + a32g3u2 + a33g3u3,
(12)

where

g1 =
4e−2(a11x∗1+a12x∗2+a13x∗3−θ1)

[1 + e−2(a11x∗1+a12x∗2+a13x∗3−θ1)]2
, (13)
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g2 =
4e−2(a21x∗1+a22x∗2+a23x∗3−θ2)

[1 + e−2(a21x∗1+a22x∗2+a23x∗3−θ2)]2
, (14)

g3 =
4e−2(a31x∗1+a32x∗2+a33x∗3−θ3)

[1 + e−2(a31x∗1+a32x∗2+a33x∗3−θ3)]2
. (15)

One has

A − λI =

∣∣∣∣∣∣
a11g1 − b1 − λ a12g1 a13g1

a21g2 a22g2 − b2 − λ a23g2
a31g3 a32g3 a33g3 − b3 − λ

∣∣∣∣∣∣ (16)

and the characteristic equation for b1 = b2 = b3 = 1 is

det|A − λI| = −Λ3 + (a11g1 + a22g2 + a33g3)Λ2

+[g1g2(a12a21 − a11a22) + g1g3(a13a31 − a11a33)
+g2g3(a23a32 − a22a33)]Λ
+g1g2g3(a11a22a33 + a12a23a31 + a13a21a32
−a11a23a32 − a12a21a33 − a13a22a31) = 0,

(17)

where Λ = λ + 1.

3.5. Regulatory Matrices With Zero Diagonal Elements

Set a11 = a22 = a33 = 0. The regulatory matrix is

W =

 0 a12 a13
a21 0 a23
a31 a32 0

 (18)

and the system of differential equations takes the form
x′1 = tanh(a12x2 + a13x3 − θ1)− x1,
x′2 = tanh(a21x1 + a23x3 − θ2)− x2,
x′3 = tanh(a31x1 + a32x2 − θ3)− x3.

(19)

Let (x∗1 , x∗2 , x∗3) be a critical point. The respective linearized system around it is
u′

1 = −u1 + a12g1u2 + a13g1u3,
u′

2 = −u2 + a21g2u1 + a23g2u3,
u′

3 = −u3 + a31g3u1 + a32g3u2,
(20)

where g1, g2, g3, given in (13) to (15), are computed assuming that the regulatory matrix
is (18). The characteristic equation for Λ = λ + 1 takes the form

−Λ3 + BΛ + C = 0, (21)

where
B = g1g2(a12a21) + g1g3(a13a31) + g2g3(a23a32), (22)

C = g1g2g3(a12a23a31 + a13a21a32). (23)

Equation (21) has the form
y3 + py + q = 0. (24)

Recall the Cardano formulas for Equation (24). This equation has complex roots if

Q :=
( p

3

)3
+

( q
2

)2
(25)



Axioms 2024, 13, 61 8 of 16

is positive. The complex roots can be obtained as

y2,3 = − a + b
2

± i(a − b)
√

3
2

, (26)

where
a = (− q

2
+

√
Q)

1
3 , b = (− q

2
−

√
Q)

1
3

are real cubic roots satisfying a · b = − p
3 . The real root of Equation (24) is y1 = a + b.

Example 4. Consider System (19) with the matrix

W =

 0 1.2 2
−2 0 1.2
0.1 0.1 0

 (27)

and b1 = b2 = b3 = 1, θ1 = 0.3, θ2 = 0.3, θ3 = 0.01.

The three nullclines for system (19) with matrix (53) are depicted in Figure 4.
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-1.0
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0.0
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Figure 4. The nullclines for System (19) ( x1—red, x2—green, x3—blue) with Matrix (53).

There is a single critical point (−0.496; 0.311; −0.308). The characteristic numbers
obtained by the linearization process are λ1 = −1.125, λ2,3 = −0.937 ± 1.178i.

4. Focus Type Critical Points

Consider again Equation (21). In our notation,

Q := −
(B

3

)3
+

(C
2

)2
. (28)

Suppose that Q > 0. Let (x∗1 , x∗2 , x∗3) be a critical point in question. The associated
characteristic numbers λ are

λ1 = −1 + (a + b),

λ2,3 = −1 − a + b
2

± i(a − b)
√

3
2

,
(29)

where

a =
(C

2
+

√
Q
) 1

3
, b =

(C
2
−

√
Q
) 1

3
(30)
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are the real values of cubic roots, and Q is given by (28). We will call such a critical point 3D-
focus. It is unstable if the real part −1− a+b

2 is positive. We arrive at the following assertion.

Proposition 4. Let (x∗1 , x∗2 , x∗3) be a critical point of the system (19). Suppose that(C
2

)2
>

(B
3

)3
. (31)

Then, Q > 0 and this critical point is a 3D-focus.

Proof. Follows from (28) to (30).

Corollary 1. Suppose the condition B < 0 holds for a critical point. Then, this point is a 3D-focus.

Proof. The relation (31) is fulfilled if B < 0.

Proposition 5. Suppose (x∗1 , x∗2 , x∗3) is a critical point of type focus of the system (19). This point
is an unstable focus if the condition −1 − a+b

2 > 0 holds.

Proof. Follows from (29), since then the real part of λ2,3 in (29) is positive.

Example 5. Consider System (19) with the matrix

W =

 0 1.5 3
−3 0 1.5
3 0.1 0

 (32)

and b1 = b2 = b3 = 1, θ1 = 0.6, θ2 = 0.3, θ3 = 0.1.

The three nullclines for system (19) with matrix (32) are depicted in Figure 5.

-1.0-0.50.00.51.0

X1

-1.0

-0.5

0.0

0.5

1.0

X2

-1.0

-0.5

0.0

0.5

1.0

X3

Figure 5. The nullclines for System (19) ( x1—red, x2—green, x3—blue).

The system has three critical points: p1, p2 and p3 at (0.790;−0.836; 0.975), (0.176;−0.248;
0.384) and (−0.982; 0.819;−0.995). The characteristic numbers λ are given in Table 1.



Axioms 2024, 13, 61 10 of 16

Table 1. The characteristic numbers λ.

- λ1 λ2 λ3

p1 −0.9268 −1.0366 − 0.6101 i −1.0366 + 0.6101 i
p2 1.1972 −2.0986 − 0.8406 i −2.0986 + 0.8406 i
p3 −0.9821 −1.0090 − 0.2189 i −1.0090 + 0.2189 i

5. Inhibition-Activation

Consider the system
x′1 = tanh(a12x2 + a13x3 − θ1)− x1,
x′2 = tanh(a21x1 + a23x3 − θ2)− x2,
x′3 = tanh(a31x1 + a32x2 − θ3)− x3,

(33)

where a12, a13, a23 are negative, a21, a31, a32 are positive.
Let the regulatory matrix be

W =

 0 −1 −1
1 0 −1
1 1 0

, (34)

and θ1 = θ2 = θ3 = θ. There is a single critical point. Introduce

g1 =
4e−2(−x2−x3−θ)

[1 + e−2(−x2−x3−θ)]2
, (35)

g2 =
4e−2(x1−x3−θ)

[1 + e−2(x1−x3−θ)]2
, (36)

g3 =
4e−2(x1+x2−θ)

[1 + e−2(x1+x2−θ)]2
. (37)

The range of values of gi is the interval (0, 1). The linearized system is
u′

1 = −u1 − g1u2 − g1u3,
u′

2 = −u2 + g2u1 − g2u3,
u′

3 = −u3 + g3u1 + g3u2.
(38)

One can obtain the matrix

A − λI =

∣∣∣∣∣∣
−1 − λ −g1 −g1

g2 −1 − λ −g2
g3 g3 −1 − λ

∣∣∣∣∣∣ (39)

and the characteristic equation

det|A − λI| = −λ3 − 3λ2 + (g1g2 + g1g3 + g2g3 − 3)λ
+(g1g2 + g1g3 + g2g3 − 1) = 0.

(40)

The roots of the characteristic equation are
λ1 = −1,
λ2 = −1 −

√
g1g2 + g1g3 + g2g3 i,

λ3 = −1 +
√

g1g2 + g1g3 + g2g3 i.
(41)

Summing up, we arrive at the following assertion.
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Proposition 6. A critical point of System (33) under the above conditions is 3D-focus; that is,
the following is true: there is 2D-subspace with a stable focus and attraction in the remaining
dimension.

6. The Case of Triangular Regulatory Matrix

We consider the special case of the regulatory matrix being in triangular form,

W =


a11 a12 ... a1n
0 a22 ... a2n
...
0 0 ... ann

. (42)

Since the presentation for the general case differs little from the three-dimensional
case, let us consider the n-dimensional variant. The system of differential equations takes
the form 

x′1 = tanh(a11x1 + a12x2 + ... + a1nxn − θ1)− x1,
x′2 = tanh( a22x2 + ... + a2nxn − θ2)− x2,
...
x′n = tanh( annxn − θn)− xn,

(43)

where n > 1. Suppose that the coefficients aij take values in the interval (0; 1].

6.1. Critical Points

The critical points of System (43) can be determined from
x1 = tanh(a11x1 + a12x2 + ... + a1nxn − θ1),
x2 = tanh( a22x2 + ... + a2nxn − θ2),
...
xn = tanh( annxn − θn).

(44)

Since the right sides in (44) are less than unity in modulus, all critical points locate in
(−1; 1)× (−1; 1)× ... × (−1; 1). Due to sigmoidal character of the function tanh z, the last
equation in (44) may have one , two or three roots.

Proposition 7. There are, at most, three values for xn in System (44).

Proposition 8. At most, 3n critical points are possible in System (43).

Proof. The last equation in (44) may have, at most, three roots, due to the S-shape of the
graph to a sigmoidal function on the right side. Consequently, the penultimate equation in
(44) may have, at most, 3 × 3 roots xn−1. In total, there are nine roots. Proceeding in this
way, we obtain, at most, 3n roots for the very first equation in (44), and therefore, at most
3n critical points for System (43). Hence, the proof.

6.2. Linearized System

The linearized system is
u′

1 = −u1 + a11g1u1 + a12g1u2 + ... + a1ng1un,
u′

2 = −u2 + a22g2u2 + ... + a2ng2un,
...
u′

n = −un + anngnun,

(45)

where

g1 =
4e−2(a11x1+a12x2+...+a1nxn−θ1)

[1 + e−2(a11x1+a12x2+...+a1nxn−θ1)]2
, (46)
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g2 =
4e−2(a22x2+...+a2nxn−θ2)

[1 + e−2(a22x2+...+a2nxn−θ2)]2
, (47)

...

gn =
4e−2(annxn−θn)

[1 + e−2(annxn−θn)]2
. (48)

The values of gi are positive and not greater than unity. The characteristic values for a
critical point are to be obtained from

A − λI =

∣∣∣∣∣∣∣∣
a11g1 − 1 − λ a12g1 ... a1ng1

0 a22g2 − 1 − λ ... a2ng2
... ... ... ...
0 0 ... anngn − 1 − λ

∣∣∣∣∣∣∣∣ (49)

and
det|A − λI| = (a11g1 − 1 − λ)(a22g2 − 1 − λ)...
...(anngn − 1 − λ) = 0.

. (50)

Evidently, 
λ1 = −1 + a11g1,
λ2 = −1 + a22g2,
...
λn = −1 + anngn.

(51)

Therefore, the characteristic values for any critical point are real, and the following
assertion follows.

Proposition 9. The triangular system (43) cannot have critical points of type focus.

7. Systems with Stable Periodic Solutions: Andronov–Hopf Type Bifurcations
7.1. 2D Case

We first study the second-order system
dx1

dt
= tanh(kx1 + bx2 − θ1)− b1x1,

dx2

dt
= tanh(ax1 + kx2 − θ2)− v2x2,

(52)

where b = −a = 2, and k > 0 is the parameter. Choose a k small enough that a unique
critical point is a stable focus. Then, increase k until the stable focus turns to unstable one.
Then, the limit cycle emerges, surrounding the critical point. This is called Andronov–Hopf
bifurcation for 2D systems.

Example 6. Consider System (52) with the matrix

W =

(
k 2
−2 k

)
(53)

and k = 0.5, b1 = b2 = 1, θ1 = 0.1, θ2 = 0.3.

The two nullclines and vector field for system (52) with matrix (53) are depicted in
Figure 6.
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-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x1

x
2

Figure 6. The nullclines and vector field for System (52) ( x1—blue, x2—red) with Matrix (53).

There is one critical point: the stable focus. If the parameter k increases, the stable
focus turns to an unstable one. Then, the limit cycle emerges, surrounding the critical point.

Example 7. Consider System (52) with the matrix

W =

(
k 2
−2 k

)
(54)

and k = 1.1, b1 = b2 = 1, θ1 = 0.1, θ2 = 0.3.

The two nullclines, vector field and limit cycle for system (52) with matrix (54) are
depicted in Figure 7.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x1

x
2

Figure 7. The limit cycle in System (52) ( x1—blue, x2—red) with Matrix (54).

7.2. 3D Case

Consider now the 3D system with the matrix

W =

 k 0 b
0 a22 0
a 0 k

, (55)

where a, b, k are as in 2D system (52). The second nullcline is defined by the relation

x2 =
1
b2

tanh(a22x2 − θ2). (56)
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Choose the parameters so that Equation (56) has three roots. Then, the second nullcline
is a union of three parallel planes.

Example 8. Consider picture of nullclines in Figure 8. There are three periodic solutions in System
(56) with the matrix (57) are depicted in Figure 9.

W =

 1.5 0 2
0 2.5 0
−2 0 1.5

 (57)

and b1 = b2 = b3 = 1, θ1 = 0.1, θ2 = 0, θ3 = 0.2.

-1.0

-0.5

0.0

0.5

1.0

X1

-1.0

-0.5

0.0

0.5

1.0

X2

-1.0

-0.5

0.0

0.5

1.0

X3

Figure 8. The nullclines of System (56) with the regulatory matrix (57).
-1.0

-0.5
0.0

0.5
1.0

X1 -1.0
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0.0

0.5

1.0

X2

-1.0

-0.5

0.0

0.5

1.0

X3

Figure 9. The three periodic solutions of System (56) with the regulatory matrix (57).

8. Control and Management of ANN

First, a citation from [22]: “Models of ANN are specified by three basic entities:
models of the neurons themselves–that is, the node characteristics; models of synaptic
interconnections and structures–that is, net topology and weights; and training or learning
rules—that is, the method of adjusting the weights or the way the network interprets the
information it receives”.

In this section, we discuss the problem of changing the behavior of the trajectories
of System (4). This may be interpreted as partial control over the system. The system has
as parameters the coefficients aij, the values θi and bi in the linear part. Properties of the
system may be changed by varying any of mentioned.

We would like demonstrate how a system of the form (4) can be modified so that
trajectories start to tend to some of indicated attractor. For this, consider the system (4),
which has as attractors three limit cycles. This can be performed via three operations: (1)
put the entries of the 2D regulatory matrix, which corresponds to 2D system with the limit
cycle L, to the four corners of a 3D matrix A; (2) choose the middle element of the 3D matrix
A so, that the equation x2 = tanh(a22x2 − θ2) with respect to x2 has exactly three roots
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r1 < r2 < r3; (3) set the four remaining values of aij to zero. Set also bi to unity. After
finishing these preparations, the second nullcline will be three parallel planes Pi, going
through x2 = ri, i = 1, 2, 3. Each of these planes will contain the limit cycle. Two side limit
cycles will attract trajectories from their neighborhoods. The middle limit cycle will attract
only trajectories, lying in the plane P2.

Now, let us solve the problem of control. Let the limit cycle at P3 be conditionally
“bad”. The problem is to change the system so that all trajectories in Q3 are attracted to
the limit cycle which, at the beginning of the process, was in the plane P1. Problems of this
kind may arise often. In the paper [20], a similar problem was treated mathematically for
genetic networks.

Solution: Change θ2 so that the equation x2 = tanh(a22x2 − θ2) has now the unique
root near P1. The second nullcline is now the plane, passing near r1. This operation is
possible, since the graph of tanh(a22x2 − θ2) is sigmoidal, and changing θ2 means shifting
the original plane P1 in both directions. After that, only one attractor (limit cycle) remains.
The problem is solved.

In neuronal systems, the θ parameters express the threshold of a response function
f ([4]). In genetic networks, θi stands for the influence of external input on gene i, which
modulates the gene’s sensitivity of response ([23]). The technique of changing the θ
parameters and thus shifting the nullclines was applied in the work [24] for building the
partial control over model of genetic network.

9. Conclusions

Modeling of genetic and neural networks, using dynamical systems, is effective in
both cases. The advantage of this approach, compared with other models, is the possibility
of following the evolution of modeled networks. Both systems have invariant sets trapping
the trajectories. As a consequence, the attracting sets exist. The structure and properties
of attractors are important for the prediction of future states of networks. Both systems
must have critical points. These points may be attractive (stable) or repelling. The limit
cycles are possible in both cases. The attractors, exhibiting sensitivity to the initial data, are
possible for three-dimensional GRN and ANN systems. Systems with specific structures
can have predictable properties. For instance, the triangular systems cannot have critical
points of the focus type. In contrast, the inhibition-activation systems typically have critical
points of this type, and can suffer bifurcations of Andronov–Hopf type. Partial control
and management are possible for GRN and ANN systems. In particular, some realistically
large-sized GRN systems allow for control and management by changing the adjustable
parameters. This problem is relevant to modern medicine.
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Abstract. The comparative analysis of systems of ordinary differential equations,
modeling gene regulatory networks and neuronal networks, is provided. In focus of
the study are asymptotical behavior of solutions, types of attractors. Emphasis is
made on the chaotic behavior of solutions.

1 Introduction

There are two important fields of application for ordinary differential equations,
namely, gene networks and neuronal networks. The evolution of these networks
can be modeled by systems of ODE. These systems have much similarity but
are not identical. The main goal of this article is to compare both systems. We
consider first two-dimensional ones and then define four-dimensional systems.
We are interested in attractors of both types systems.

Attractors of these systems are subsets of the phase space that attract the
trajectories of the system. The simplest attractors are stable critical points (in
other words, equilibrium states). More complex attractors are stable periodic
solutions - limit cycles. In addition to those indicated, chaotic attractors are
encountered more and more often, as real objects are studied. These attractors
are attracting more and more attention and are a popular object of study both
for specialists in the natural sciences and for mathematicians, economists, and
sociologists.
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In this article, the authors focus on two somewhat similar, and in some ways
significantly different objects, namely, genes and neural networks. The former
are present in the cells of living organisms and participate in the processes of
vital activity, response to the influence of the external environment and in the
processes of formation of the organism. We will use the abbreviation GRN for
gene networks. Second, neural networks are present in the brain of humans and
higher animals and control the functions of living organisms. This management
is extremely effective and is still the subject of study. It is natural to want to
reproduce the processes taking place in the brain with their efficiency and
apply them for management and control in various fields. At the moment, the
solution of this problem is far from complete.

In attempts to study both gene networks and neural networks, mathemat-
ical methods have been used. From the point of view of mathematics, both
types of these networks are a set of some elements, the nature of which is
not so important, and the connections between them. The question is how
these links can be described and whether non-trivial conclusions can be drawn
from mathematical models that will help solve the problems of understanding
the principles of network functioning and applying the knowledge gained in
practical activities.

Let’s focus on gene networks. They can be thought of as some kind of net-
work nodes that interact with other nodes by sending messages (proteins) that
tell other nodes to increase or decrease their activity. As a result, the state of
the network changes as needed, and a collective reaction of the network to what
is happening is developed. There are many unanswered questions here. In a
simplified scheme, the main question is how the state of the system changes
and what this will lead to. Among the mathematical models of gene networks,
there are very simplified ones that use two answers to describe each element,
yes or no, one or zero. And such models are useful and lead to the solution
of some practical problems. Let us mention the tasks of automatic, without
human intervention, solving the problems of managing telecommunication net-
works. Techniques and methods for the optimal allocation of resources in a
given situation in telecommunication networks are described in the works [9].
The main idea of this methodology is to reproduce schemes and principles of
gene network control in telecommunication networks. How successfully this
task is solved can be judged by the publications [10]. Models based on the
representation of gene networks as objects of graph theory, a well-developed
area of discrete mathematics, are very useful.

It seems to be the most effective modeling of gene networks using systems
of ordinary differential equations, where each equation describes a separate
element of the network. These systems are quasi-linear, that is, they consist
of linear and non-linear parts. In the linear part, a description of the network
assumes that there is no communication between the elements. The nonlinear
part contains information about the interaction of elements obtained on the
basis of experimental data. These nonlinearities are limited, which corresponds
to the real nature of the interaction. The description of the interaction between
the elements is contained in a special matrix built into the non-linear part of the
system. This matrix is usually called a regulatory matrix and is denotedW. The
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corresponding system in the case of two, three, and four elements is given in the
following sections. The solutions of the ODE system are vector functions that
depend on time. At each given moment, the state of the simulated network is
associated with the solution vector of the ODE system. By solving this system
(numerically or analytically), one can obtain important information about the
future states of the system, and, consequently, the network. That is why the
study of attracting sets (attractors) in the system of ODEs is an important
task.

All of the above applies to a large extent to neural networks. Artificially
built on the model of real neural networks, networks are called artificial neural
networks and are denoted by ANN.

ANNs can also be modeled by ODE systems according to the previously
described scheme, and both ODE systems are similar. We are going to look
at both types of ODE systems, draw parallels and note the differences. Par-
ticular attention is paid to attractors in systems of both types. Previously
the comparison was made between three-dimensional systems, modeling GRN
and ANN [16]. In this paper we consider first two-dimensional systems of
both kinds, and then we construct four-dimensional GRN and ANN systems,
comparing their characteristics, such as the ability to have periodic attractors,
Lyapunov exponents etc.

The gene system (2.1) have appeared first in [19] (see also [12]). It was used
in [4,7] and in more recent papers [1,2,3,11,13,14,15]. Periodic solutions were
in a focus in [5, 20]. For neuronal systems consult [6, 8]. Chaos in differential
equations have been studied in [17].

2 GRN and ANN in general

The general system, which is used to model GRN of n elements, is
x′
1 = f1(w11x1 + . . .+ w1nxn − θ1)− v1x1,

x′
2 = f2(w21x1 + . . .+ w2nxn − θ2)− v2x2,

. . . . . . . . . ,
x′
n = fn(wn1x1 + . . .+ wnnxn − θn)− vnxn,

(2.1)

where fi(z) are sigmoidal functions, which are monotonically increasing from
zero to unity and have a single inflection point. They are chosen to be smooth.
In the sequel we use the Gompertz function f(z) = e−e−µz

. The parameter
µ characterizes the incline of the graph in vicinity of the inflection point. If
µ tends to positive infinity, the graph of the function tends to be piece-wise
linear with almost vertical middle segment and two infinite segments almost
zero and almost unity. The parameters vi are for the natural decay of solutions
(exponentially tending to zero) in the absence of a nonlinear part. The matrix
W = wij is for the description of interaction of the elements xi. The positive
wij means activation of xi by xj . Similarly, the negative value of wij means
inhibition (repression) and zero value of wij means no interaction. The system
(2.1) is used as a (simple) model of interaction of genes in a living organism.
The parameters µ are for the individual characterstics of genes, the parameters
θ are for the thresholds, upon reaching which the gene begins to respond.
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The general system, which is used to model ANN of n elements, is

dx1

dt
= tanh (w11x1 + w12x2 + . . .+ w1nxn)− b1x1,

dx2

dt
= tanh (w21x1 + w22x2 + . . .+ w2nxn)− b2x2,

. . . . . . . . . ,
dxn

dt
= tanh (wn1x1 + wn2x2 + . . .+ wnnxn)− bnxn.

(2.2)

The hyperbolic tangent function tanh(z) is sigmoidal, but its range of values
is (−1, 1). This system is understood as a set of neurons (identified as xi),
where each element absorbs signals from other ones, and elaborate its own
single output. More details on systems (2.1) can be found in [4] and [8]. On
application of the system (3.1) in multi-dimensional setting for medica purposes
the reference [18] should be consulted.

Both systems have an invariant set in the phase space. The first system has
an invariant set {0 < xi < 1/vi, i = 1, 2, . . . , n}. The vector field, generated
by (2.1), is directed inward on faces of the invariant set, which can be checked
by direct inspection, taking into account the range of values for the sigmoidal
functions fi, which is (0, 1), and positivity of the coefficients vi. Similarly, the
second system (2.2) has an invariant set {−1/bi < xi < 1/bi, i = 1, 2, . . . , n}.

This is the reason why both systems always have critical points. Moreover,
both systems have attractors, which locate in the invariant sets.

3 2D genetic system

Genetic networks can be modeled by systems of ordinary differential equations.
Consider the two-dimensional system with the Gompertz function

dx1

dt
= e−e−µ(w11x1+w12x2−θ1)

− b1x1,

dx2

dt
= e−e−µ(w21x1+w22x2−θ2)

− b2x2,
(3.1)

where µ, θi and bi are parameters.

Proposition 1. There exists at least one critical point. All critical points (x, y)
are in (0, 1

b1
)× (0, 1

b2
).

Proof. The nullclines of the system (3.1) are given by the relations{
b1x1 = e−e−µ(w11x1+w12x2−θ1)

,

b2x2 = e−e−µ(w21x1+w22x2−θ2)

.
(3.2)

The critical points are solutions of the system (3.2). The first nullcline stretches
in the strip 0 < x1 < 1/b1, since the range of values of the functions on the right
sides in (3.2) is (0, 1), and the coefficients bi are positive. Similarly, the second
nullcline extends from −∞ to +∞ in the ‘orthogonal’ strip 0 < x2 < 1/b2.
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Both strips meet in the rectangle 0 < x1 < 1/b1, 0 < x2 < 1/b2 and intersect
there. ⊓⊔

The number of critical points is finite, and cannot exceed the number nine (for
the two-dimensional case). This (nine points) can happen when both nullclines
have a Z-shaped form, one Z is normal, and the second Z is rotated at the angle
ninety grades.

We will construct an example of a two-dimensional system of the form (3.1),
which defines rotating vector field. Let the coefficient matrix in (3.1) be

W =

(
1 2
−2 1

)
, (3.3)

and µ = 4, b1 = b2 = 1, θ1 = 1.2, θ2 = −0.5. There is one critical point and a
limit cycle exists.

It is depicted in Figure 1 together with the nullclines and the vector field.
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Figure 1. The closed trajectory of
the system (3.1) with the regulatory
matrix (3.3), b1 = b2 = 1, µ = 4,

θ1 = 1.2, θ2 = −0.5.
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Figure 2. The attractors in system
(3.1), with matrix (3.4), b1 = b2 = 1,

µ = 4, θ1 = −0.5, θ2 = 1.2.

Now we construct the second two-dimensional system. Let the coefficient
matrix in (3.1) be

W =

(
1.7 −2
2 1.7

)
, (3.4)

and µ = 4, b1 = b2 = 1, θ1 = −0.5, θ2 = 1.2. There is one critical point and
limit cycle exists.

It is depicted in Figure 2 together with the nullclines and the vector field.

The vector field, defined by the system (3.1), is directed inward on the
border of the box. The rotation of the vector field is counter-clock wise.
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4 Example for 4D GRN-system

Consider the system

dx1

dt
= e−e−µ(w11x1+w12x2+w13x3+w14x4−θ1)

− b1x1,

dx2

dt
= e−e−µ(w21x1+w22x2+w23x3+w24x4−θ2)

− b2x2,

dx3

dt
= e−e−µ(w31x1+w32x2+w33x3+w34x4−θ3)

− b3x3,

dx4

dt
= e−e−µ(w41x1+w42x2+w43x3+w44x4−θ4)

− b4x4

(4.1)

with the parameters b1 = b2 = b3 = b4 = 1, µ = 4, θ1 = θ4 = 1.2, θ2 = θ3 =
−0.5 and regulatory matrix

W =


1 2 0 0
−2 1 0 0
0 0 1.7 −2
0 0 2 1.7

 .

It consists of two independent 2D systems. The first 2D system has the stable
periodic solution with the period T1 ≈ 3.19. The second one has the periodic
solution with the period T2 ≈ 7.68. Therefore the period attractor exists for
the 4D system (4.1). This system has been studied numerically (Wolfram
Mathematica), provided a description of the phase space and images of 3D
projections.

The oscillatory solutions are shown in Figure 3 and the attractor is shown
in Figure 4.
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Figure 3. Solution (x1, x2, x3, x4) of
system (4.1).
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Figure 4. The projection of the
attractor on 3D (x1, x2, x4)-subspace

of the system (4.1).

5 2D neuronal system

Consider the system, arising in the theory of neuronal networks. The hyperbolic
tangent sigmoid function is used in the model.
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
dx1

dt
= tanh (w11x1 + w12x2)− b1x1,

dx2

dt
= tanh (w21x1 + w22x2)− b2x2,

(5.1)

where bi are parameters.

Proposition 2. There exists at least one critical point. All critical points (x, y)
are in (− 1

b1
, 1
b1
)× (− 1

b2
, 1
b2
).

Let the coefficient matrix in (5.1) be

W =

(
2 2
−2 2

)
, (5.2)

and b1 = b2 = 1. There is one critical point and limit cycle exists.
It is depicted in Figure 5 together with the nullclines and the vector field.
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Figure 5. The attractors in
system (5.1), with matrix

(5.2), b1 = b2 = 1.
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Figure 6. The attractors in
system (5.1), with matrix

(5.3), b1 = b2 = 1.

Let the coefficient matrix in (5.1) be

W =

(
1.2 −2
2 1.2

)
, (5.3)

and b1 = b2 = 1. There is one critical point and limit cycle exists. It is depicted
in Figure 6 together with the nullclines and the vector field. The vector field,
defined by the system (5.1), is directed inward on the border of the box.

6 Example for 4D ANN-system

Consider the system

dx1

dt
= tanh (w11x1 + w12x2 + w13x3 + w14x4)− b1x1,

dx2

dt
= tanh (w21x1 + w22x2 + w23x3 + w24x4)− b2x2,

dx3

dt
= tanh (w31x1 + w32x2 + w33x3 + w34x4)− b3x3,

dx4

dt
= tanh (w41x1 + w42x2 + w43x3 + w44x4)− b4x4

(6.1)
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with the parameters b1 = b2 = b3 = b4 = 1 and regulatory matrix

W =


2 2 0 0
−2 2 0 0
0 0 1.2 −2
0 0 2 1.2

 .

It also consists of two independent 2D systems. The first 2D system has the
stable periodic solution with the period T1 ≈ 6.85. The second one has the
periodic solution with the period T2 ≈ 3.76. Therefore the period attractor
exists for the 4D system (6.1). The oscillatory solutions are shown in Figure 7.

The attractor is shown in Figure 8.
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Figure 7. Solution
(x1, x2, x3, x4) of system (6.1).
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Figure 8. The projection
of the attractor on 3D

subspace on (x1, x2, x4) of
system (6.1).

7 Conclusions

Both GRN and ANN systems have similar behavior. The results, obtained for
gene networks, can in many cases be transferred to neuronal systems, and vice
versa. Depending on the matrix W, the genetic system can have attractors
such as stable equilibria, limit cycles, and, for higher dimensions, also chaotic
attractors. The critical points and nullclines can be shifted and moved by
manipulating of the parameters θ. One critical point always can be placed into
the center of the invariant set by the appropriate choice of θ.

The ANN system is comparatively easier to study since it has not param-
eters µ and θ. It also can have attractors in the form of stable equilibria and
limit cycles. Higher order samples of neuronal systems can be constructed by
composing several two dimensional systems with known behavior into larger
ones. In this way systems of any dimension can be constructed possessing at-
tractors. The chaotic behavior of solutions can be observed for 4D systems and
higher, as shown in the Appendix.
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Appendix

If we change a little bit the regulatory matrix, the behavior of solutions tends
to be chaotic. We provide the matrix W, solutions with given initial data,
the projection of an attractor and Lyapunov curves. For both gene system
(4.1) and neuronal system (6.1). Consider first the system (4.1), where the
regulatory matrix is

W =


1 2 0 −0.6
−2 1 0 0
0 0 1.7 −2
0.5 0 2 1.7

 . (7.1)

Let us recall that the elements added to the matrix, have the following mean-
ing. The added element at the upper right corner describes inhibition of the
first element x1 by the last one x4. Conversely, the element at the lower left
corner is for the activation of the element x4 by the first one x1. Without these
elements the system has a periodic attractor. So adding inhibition and activa-
tion appropriately brings the disbalance in the system, and this leads to chaotic
behavior.

t

X

Figure 9. Solutions
for system(4.1) with
perturbed regulatory

matrix (7.1) and
θ1 = θ4 = 1.2, θ2 =
θ3 = −0.5, µ = 4.
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Figure 10. The
projection of the
attractor on 3D
subspace on

(x2, x3, x4) of system
(4.1) with perturbed
regulatory matrix

(7.1).
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Some solutions are depicted in Figure 9. The respective trajectory tends to
an attractor. The 3D projection of this trajectory is shown in Figure 10.

The Lyapunov curves are constructed with the aim to detect the sensi-
tive dependence of solutions to the initial data. The Lyapunov curves for our
example are depicted in Figure 11.
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Figure 12.
Solutions for system
(6.1) with perturbed
regulatory matrix

(7.2).
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Figure 13. The
projection of the
attractor on 3D
subspace on

(x2, x3, x4) of system
(6.1) with perturbed
regulatory matrix

(7.2).
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Figure 14. The
dynamics of Lyapunov
exponents for system
(6.1) with perturbed
regulatory matrix

(7.2).

Following the same scheme, consider the neuronal system (6.1) with the
matrix (7.2)

W =


2 2 0 −0.6
−2 2 0 0
0 0 1.2 −2
0.4 0 2 1.2

 . (7.2)

Some solutions are depicted in Figure 12.
The trajectory tends to an attractor, formed by two two-dimensional limit

cycles. The 3D projection of this trajectory is shown in Figure 13. The Lya-
punov curves in Figure 14 provide indications to the chaotic behavior of solu-
tions.
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Abstract. A multiparameter system of ordinary differential equations, arising in the theory of neuronal networks, is considered.
The structure of this system presupposes the presence of attractors. The problem of control and management of this system by
changing parameters is considered. The conditions are given for the transition of the trajectory from the basin of attraction of one
attractor to another attractor. Examples and illustrations are provided.

INTRODUCTION

Arti�cial neural networks (ANN) have appeared as attempts to model the functioning of the human brain. The study
of ANN became a very popular �eld of application of mathematical methods and has resulted in the creation of
multiple efficient tools to deal with real-world practices. In some models [7], [5] the neurons are considered as simple
input-output elements which can accept a cumulative signal from many other elements and produce their own response
(which is transferred further). When looking for dynamics of this process, one can �nd in the literature two approaches
using systems of ordinary differential equations. The �rst one is represented by systems of the form



x′1 =
1

1 + e−µ1 (w11 x1+w12 x2+...+w1n xn−θ1) − v1x1,

x′2 =
1

1 + e−µ2 (w21 x1+w22 x2+...+w2n xn−θ2) − v2x2,

...

x′n =
1

1 + e−µn (wn1 x1+wn2 x2+...+wnn xnn−θn) − v3xn,

(1)

which appears in different contexts and for different dimensions in [20], [19], [3], [8], [9], [6], [4]. The three dimen-
sional version, aiming to model simple neuronal network, was studied in [5]. Elements xi in (1) are interpreted ([5])
as neurons, and the elements wi j are the weights of �the synaptic connection from neuron i to neuron j�. The sig-
moidal response function f (z) = 1

1+e−µ(z−θ) makes the system nonlinear. The parameters θi and µi are respectively the
threshold and the slope of a response function. We emphasize presence of the threshold parameter θi in each equation.
The value of the response function is always positive since the range of the sigmoidal function is an open interval
(0, 1). The constant positive coefficients vi are the degradation rates (without the nonlinearities solutions of system (1)
exponentially tend to zero). Some authors allow vi be dependent on the variables xi.

On the other hand, another system


x′1 = tanh(a11x1 + a12x2 + a13x3) − b1x1,
x′2 = tanh(a21x1 + a22x2 + a23x3) − b2x2,
x′3 = tanh(a31x1 + a32x2 + a33x3) − b3x3

(2)



can be used to model neuronal network ([10], [18, Ch. 6.10]). The system (2) is a three-dimensional version. The
advantage is that the response can be also negative now, since the range of values of the hyperbolic tangent function is
(−1, 1). The present model has as an output a set of trajectories which can tend to different attractors. In the next section
some properties of system (3) are listed. An example is provided of a system which have three nontrivial attractors
(closed trajectories). The ability to manage system (3) by changing parameters θ is demonstrated. The structure of the
phase space changes, and a selected trajectory falls into the basin of attraction of the desired attractor. For the practical
use of similar approaches, see [2], [1], [9], [12],[15], [13].

Control by changing nullclines

Consider the system (2). Let us modify it by introducing the threshold parameter.


x′1 = tanh(a11x1 + a12x2 + a13x3 − θ1) − b1x1,
x′2 = tanh(a21x1 + a22x2 + a23x3 − θ2) − b2x2,
x′3 = tanh(a31x1 + a32x2 + a33x3 − θ3) − b3x3.

(3)

Let for simplicity bi = 1 for i = 1, 2, 3. For our purposes this is not restriction of generality.
We will need the nullclines, which are de�ned by the system


x1 = tanh(a11x1 + a12x2 + a13x3 − θ1),
x2 = tanh(a21x1 + a22x2 + a23x3 − θ2),
x3 = tanh(a31x1 + a32x2 + a33x3 − θ3).

(4)

The critical points (which are called also the equilibria), are solutions of the system (4).
This system has the following properties:

1) It has an invariant set Q3 = {−1 < xi < 1, i = 1, 2, 3};
2) It has at least one critical point;
3) It can have multiple critical points, but their number is limited;
4) It can have stable critical points, which are the simplest attractors;
5) It can have an attractor in the form of a stable periodic solution (limit cycle);
6)It can have an attractor in the form of a stable periodic solution (limit cycle);

These properties were con�rmed by appropriate proofs and the construction of examples in the works [1] to [4],
[11] to [17].

Assertion. We claim that the system (3) can be controlled by changing the parameters θi.
Geometric justi�cation for this is the following. The three-dimensional system has three nullclines. The critical

points are points of intersections of nullclines. The mutual location of nullclines de�ne the existence of other attractors
also, including stable closed trajectories, serving as attractors.

Example

Consider system (2) with coefficients ai j as in the matrix below

A =


2.2 −1.3 0
3 2.2 0
0 0 2.2

 , (5)

and bi = 1 for i = 1, 2, 3. The system takes the form


x′1 = tanh(2.2x1 − 1.3x2 − θ1) − x1,
x′2 = tanh(3x1 + 2.2x2 − θ2) − x2,
x′3 = tanh(2.2x3 − θ3) − x3,

(6)

where θi = 0 for i = 1, 2, 3. The nullclines are given by


x1 = tanh(2.2x1 − 1.3x2 − θ1),
x2 = tanh(3x1 + 2.2x2 − θ2),
x3 = tanh(2.2x3 − θ3),

(7)



where θi = 0 for i = 1, 2, 3. The two-dimensional system
{

x1 = tanh(2.2x1 − 1.3x2),
x2 = tanh(3x1 + 2.2x2) (8)

has the limit cycle which serves as an attractor. The third equation (with respect to x3) in (7)

x3 = tanh(2.2x3) (9)

has exactly three roots, say z1 < z2 < z3. The third nullcline is a union of three planes x3 = zi, i = 1, 2, 3, and in
any plane the limit cycle (8) appears as a two-dimensional closed trajectory. Denote them C1,C2,C3. The trajectories
C1 and C3, corresponding to respectively z1 and z3, attract trajectories from their neighborhoods, but C2 attracts the
trajectories that locate only on the plane x3 = z2. The trajectories C1 and C3 (red and blue ones) are depicted in Figure
2(left) together with a couple of trajectories (red and blue) tending to them.

Suppose that the problem of control is to send all the trajectories starting in the unit cube Q3, to C3 (blue attractor).
This is possible for system (7) if the parameters θi are chosen appropriately.

Solution. Do not change the coefficient matrix A and bi, but set θ1 = −0.01, θ2 = −0.01, θ3 = −0.9. This affects
all nullclines. The third nullcline is de�ned by the equation

x3 = tanh(2.2x3) + 0.9. (10)

Both equations (9) and (10) are visualized in Figure 1. Under the new choice of θ3 the equation (10) has only one root.
Consequently, only one attractor remains in Q3 in the form of a closed trajectory. It is shown in Figure 2 on the right.
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FIGURE 1. Visualization of equations (9) (left) and (10) (right).

Conclusion

There are at least two forms of dynamical mathematical models for neuronal networks. The �rst one uses the positive
valued response function, depending also on the threshold parameter θ. The second one uses the response function
with broader value range including negative values. Combining both forms makes it possible to obtain a (partially)
controlled system. In this note, we have demonstrated a geometrically transparent control that allows us to reorient
the trajectories to the chosen attractor.
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