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Abstract 
The number of European eel populations have decreased rapidly by over 95% since 1980 
throughout its range, due to environmental changes, parasites, bacteria, pollution, 
ecological changes associated with global warming, loss of habitat, migration barriers, as 
well as anthropogenic factors – uncontrolled and unsustainable fishing. As a 
consequence, the European eel has been listed as critically endangered on the IUCN red 
list. The EU Commission proposed stopping eel fishing for six months in 2023. European 
eels play an important role in ecosystem dynamics. Eels have the ability to adapt to 
changing oxygen concentration, and tolerance of different ranges of water salinity. 
European eels have been used as a bioindicator species worldwide. In addition to a 
bioindicators species, European eels are a commercially important fish species. The 
European eel is the only eel species which inhabit in Latvia. Glass eels are mainly used 
for stocking in lakes and rivers in Latvia. Only four water bodies in Latvia are freely 
accessible to natural migration of eels. Little is known about the genetic diversity of 
European eels in Latvian lakes. Research about the genetic diversity of eel populations 
from waterbodies in Latvia started to develop during the last years and this genetic 
knowledge is necessary for eel resource management. The present study may provide 
additional data for further investigation of European eel population in Latvia. In this study 
eight microsatellite loci were used to investigate the genetic structure within and between 
samples in five Latvian lakes, namely Liepajas, Usmas, Kisezers, Aluksnes and Sivers. 
Allelic variation was different in all investigated eel samples; the observed and expected 
heterozygosity level was quite high. Bayesian-based STRUCTURE analysis suggested 
that there are three main genetic groups within our study area. The high values of genetic 
differentiation revealed in the present study are possibly the result of gene pool mixing 
after multiple restoking events and eel natural migration, where it still is possible. 
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INTRODUCTION  
 
The number of European eel populations have 
decreased rapidly by over 95% since 1980 
throughout its range, due to environmental 
changes, parasites, bacteria, pollution, ecolo-
gical changes associated with global warming, 
loss of habitat, migration barriers that limit the 
successful dispersion area of the species, as 
well as anthropogenic factors – uncontrolled 
and unsustainable fishing (Moriarty 1990, 
Dekker 2004, Moriarty 2012). As a conse-
quence, the European eel has been listed as 
critically endangered on the IUCN red list 
(Freyhof & Kottelat 2013). A management 
plan for European eel, was approved in 2007, 
establishing measures for the recovery of the 
stock of European eel (Lin et al. 2001). This 
Regulation (EC) No 1100/2007 establishes a 
framework for the protection and sustainable 
use of the stock of European eel in Community 
waters and in coastal lagoons, in estuaries, and 
in rivers and communicating inland waters of 
Member States (Council Regulation 2007 
(EC)). Since 2001, the International Council 
for the Exploration of the Sea (ICES) has 
recommended that eel catches be “reduced to 
the lowest possible level”. And in 2021 this 
was clarified to a recommendation that “there 
should be zero catches in all habitats in 2022”, 
including catches of glass eels for restocking 
and aquaculture. The EU Commission 
proposed stopping eel fishing for six months 
in 2023 (ICES Advice 2021). 
 
European eels play an important role in 
ecosystem dynamics. Eels have the ability to 
adapt to changing oxygen concentration, and 
tolerance of different ranges of water salinity 
(Arleny et al. 2007). They are an essential part 
of the food chain. Feeding on prey fish eggs, 
they participate in the biological balance and 
they are used as food resources for other 
animals (Deelder 1984). European eels have 
high potential for bioaccumulation, making 
them suitable as environmental bioindicators. 

According to several studies, for instance 
Dutil et al. 1985, Castonguay et al. 1989, 
Bruslé 1991, Robinet & Feunteun 2002, 
Arleny et al. 2007, European eels have been 
used as a bioindicator species worldwide to 
determine the presence of toxic substances 
that accumulate in the liver and muscles and 
this species can be used as an indicator of the 
presence of bacteria in the water (Callol et al. 
2015). In addition to a bioindicators species, 
European eels are a commercially important 
fish species (Arai 2014). 
 
One of the main aspects of European eel 
protection is conservation of genetic diversity. 
Genetic diversity determines the future 
sustainability, fitness rate and adaptation of 
populations (Maes & Volckaert 2007). 
Conservation of the genetic diversity of 
populations, provides potential to evolve in 
response to environmental changes. Low 
genetic diversity results in a number of 
problems - high susceptibility to parasites and 
disease, decreased sperm quality, reduced 
litter size, increasing juvenile mortality - that 
eventually can lead to extinction of popu-
lations (Reed & Frankham 2003, Furlan et al. 
2012). One of the most easily applicable and 
versatile method for investigation of conser-
vation genetics is using microsatellite mar-
kers, because they have a number of beneficial 
properties like high polymorphism, are codo-
minant and, selectively neutral. Those markers 
provide important information on the genetic 
variation and genetic structure of investigated 
populations (Abdul-Muneer 2014). 
 
The number of genetic investigations of Euro-
pean eel have increased in the last 25 years 
(Ragauskas & Butkauskas 2013, Jacobsen et 
al. 2014, Ragauskas et al. 2014, Ragauskas et 
al. 2017, Frankowski et al. 2019, Oreha et al. 
2023 and others). Earlier studies supported the 
hypothesis of panmixia – absence of genetic 
structure (DeLigny & Pantelouris 1973, Lintas 
et al. 1998), but recent studies disprove this 
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theory, and reported evidence for significant 
structuring of European eel populations 
(Daemen et al. 2001, Maes & Volckaert 2002, 
Ragauskas & But-kauskas, 2013, Ragauskas 
et al. 2017). Ragauskas et al. (2014), investi-
gated European eels from the Curonian 
Lagoon, Baltic sea and Gulf of Riga, and 
detected no significant genetic differentiation, 
however, the population genetic structure 
could be described as a genetic mosaic.  
 
European eel is the only eel species which 
inhabit in Latvia (Aleksejevs & Birzaks 2011). 
Nevertheless, there is a lack of information 
about genetic diversity of European eel in 
Latvian lakes. Research about genetic diver-
sity of eel population from waterbodies in 
Latvia has started only recently (Oreha et al. 
2023), and this genetic knowledge is neces-
sary for eel resource management. Glass eels 
are mainly used for stocking of lakes and 
rivers in Latvia (Shiao et al. 2006). Only four 
water bodies in Latvia are freely accessible to 
natural migration of eels (Aleksejevs & 
Birzaks 2011).  
 

This study assessed the genetic diversity and 
structure of population of European eel from 
five lakes in different geographic locations in 
Latvia using microsatellite markers. This 
information can contribute to the establish-
ment of a sustainable management plan for 
this endangered species as well as identifying 
perspectives for fisheries. The present study 
may provide additional data for further 
investigation of populations of European eels 
in Latvia. 
 
MATERIALS AND METHODS 
 
Sample Collection 
 
Samples of fish tissue (skeletal muscles) 
preserved in 96.6% ethanol from fifty-seven 
freshwater eels were analysed from five 
Latvian lakes, namely Lake (hereafter L.) 
Liepajas, L. Usmas, L. Kisezers, L. Aluksnes 
and L. Sivers (Fig. 1, Tab. 1). Samples were 
used from the collection of preserved 
materials at Laboratory of Parasitology and 
Histology at Daugavpils University, Latvia. 
All samples were collected in 2014. 

 
 

Figure 1. Locations of five sampling sites of European eel. Map author: M. Nitcis. Data from 
https://data.gov.lv/lv. 
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Table 1. Sampling sites, location and numbers of individuals of analysed eel Anguilla anguilla.  
 

Sampling sites Location Number 
L. Usma 57°10'49"N, 22°9'27"E 22 
L. Liepaja 56°27'37"N, 21°3'14"E. 3 
L. Kisezers 57°1'24"N, 24°10'3"E 10 
L. Aluksnes 57°25'35.8"N, 27°03'18.7"E 2 
L. Siver 56°01′08.0″N 27°19′54.6″E 20 

 
Microsatellite analysis 
 
DNA was extracted from ethanol-preserved 
muscle tissue samples and purified using the 
DNeasy Blood & Tissue Kit (Qiagen, 
Germany). DNA quantity and quality were 
assessed by the spectrophotometer NanoDrop-
1000 (Thermo-Scientific, USA). The 
extracted DNA was stored at -20ºC until 
analysis. For the analysis, the DNA was 
diluted to a concentration of 10 ng/μL. 
 
PCR reaction was carried out using eight 
microsatellite primer pairs described in 
Wielgloss et al. (2008) (Tab. 2). Microsatellite 
amplification was performed using the Veriti 
96-Well Thermal Cycler. PCR (polymerase 
chain reaction) with fluorescently marked 
primers (the forward primer in each pair being 
labelled with the fluorescent label HEX or 

FAM) was carried out  in a final volume of 12 
μL, containing 100 ng of DNA sample, 10mM 
Tris–HCl buffer with 50mM KCl, 1.5 mM 
MgCl2, 2mM dNTPs mix, 0.06 U/μL Taq 
DNA polymerase, 0.4 μmol/μL of each 
primer. The PCR thermal cycling program had 
an initial denaturation at 95 ºC for 5 min, 
followed by 35 cycles with denaturation at 95 
ºC for 35 s, annealing at 55 ºC for 35 s, and 
extension at 72 ºC for 45 s, followed by a 10–
min final extension at 72 ºC, and cooling at 4 
ºC. Both positive and negative controls were 
used during PCR amplification. PCR products 
were separated on 3130xl Genetic Analyzer 
(Applied Biosystem, USA) using GeneScan 
ROX 500 size standard (Applied Biosystem, 
USA), and alleles were scored with 
GeneMapper 3.7 software (Applied 
Biosystem, USA). 

 
Table 2. Characterization of microsatellite markers used in research (Wielgloss et al. 2008). 
 

Primer ID Core motif 
(Nx) Primer sequence (5` - 3`) Label 

dye 

AangCT53 (CT)17 F:GGTGACACACAGTCTCTTTGG HEX 
R: ACAATGCATGTGCCTGAATG  

AangCT59 (CT)18 F: GCAACCCTTTCTCACTCCAC HEX 
R: CTCACTGCGCAAACAAGAAG  

AangCT67 (TG)6N8(TG)5TA(TG)4(AG)2(TG)7 F: GACAGACGGACAGACAATGC HEX 
R: GGTGGTGAATTTTGGTCCTG  

AangCT68 (AG)22 F: CCAGGCAATTGCTTTCTCAC FAM 
R: TCATTGTGTTTGGCACTTCC  

AangCT76 (TC)17(AC)13 F: CTTCAGCTTGGAGGTGTTCC FAM 
R: CTGTGCAGGAGTCACGTTTC  

AangCT77 (CT)46GT(CT)3 F: CCTGATGTTTTCAGCGTTTG FAM 
R: GAAAGTGGGCTCAGTTCTGG  

AangCT89 (CT)15(TC)3(CT)4 F: AACCAGCGAGATGATGATTG HEX 
R: AGAGCGTGAAGCCTTTTGAC  

AangCA80 (TG)4CG(TG)14 F: TTCCTCTGGTCTTTCACACG FAM 
R: AGCTGGAGGACACGGATG  

Tm melting temperature, Ta annealing temperature 
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Data analysis 
 
The Micro–Checker 2.2.3 software was used 
to check the data for errors and to identify null 
alleles and other genotyping errors: short 
allele dominance (large allele dropout) and 
scoring of stutter peaks (Van Oosterhout et al. 
2004).  
The following standard indices of genetic 
variation were calculated: number and fre-
quency of alleles per locus, occurrence of 
private alleles in each population, and 
observed (Ho) and expected (He) hetero-
zygosity levels at each locus. The differences 
and statistical (X2) significance between 
observed and expected heterozygosity values 
were calculated using POPGENE 1.32 (Yeh et 
al. 1999) and GenAlEx 6.41 software (Peakall 
& Smouse 2006). Richness of alleles and 
private alleles in each population were 
determined, accounting for differences in the 
size of samples. The rarefaction procedure was 
used for the smallest sample size as 
implemented in the software HP–RARE 1.0 
(Kalinowski 2005). 
 
In order to estimate and visualize the genetic 
structure and differentiation of the studied 
European eel populations the software 
STRUCTURE 2.3 (Hubisz et al. 2009) and 
POPHELPER Structure Web App v1.0.10. 
(Francis 2017) were used. A model assuming 
admixture and correlated allele frequencies 
between K populations (Burn–ins of 100,000 
replications and 300,000 Markov chain Monte 
Carlo (MCMC) replicates) was used. Samp-
ling locations were used as prior information 
to assist the structuring (the LOCPRIOR 
model) as recommended for weak signals of 
structuring (Hubisz et al. 2009). Values of K 
between one and five were tested, running 
STRUCTURE ten times for each K and using 
Evanno's ΔK method to determine the most 
suitable number of clusters (Evanno et al. 
2005). The most likely (highest ln Pr(Χ|Κ)) 
grouping was visualized using POPHELPER 
Structure Web App v1.0.10. (Francis 2017). 
The genetic relatedness of the populations was 
estimated with Nei's index of genetic distance 

(Nei et al. 1983) using the software Popu-
lations 1.2.32 (Langella 2005). The corre-
sponding dendrogram was created according 
to the UPGMA method using the software 
TreeView (Page 1996). Genetic divergence 
was estimated using pairwise FST values (Weir 
& Cockerham 1984) with GenAlEx 6.41 
software (Peakall & Smouse 2006). The P–
values for the pairwise FST values were 
corrected for multiple comparisons using the 
Bonferroni correction (BFC) following Rice 
(1989).  
 
 
RESULTS 
 
Genetic variation 
 
The parameters of genetic variation in the 
studied European eel population in Latvian 
lakes are shown in Tab 3. A total of 111 alleles 
from among eight microsatellite loci were 
determined in five studied samples. Allele 
number in different samples varied from 21 to 
81. Higher allele number were revealed in 
samples from Lake Sivers and Lake Usmas 
(81 and 78 accordingly). The mean number of 
alleles per locus or allelic richness (NRA) 
varied from 2.63 (L. Aluksne) to 3.28 
(L. Usmas). The mean number of private 
alleles (NRPA) varied from 0.63 (L. Aluksne) to 
1.00 (L. Sivers).  
 
Table 3. Summary of genetic statistics of the 
studied eel samples included in the study. 
 

Samples NA NRA NRPA HO HE 

L. Aluksne  21 2.63 0.63 0.563 0.563 
L. Kisezers  65 3.16 0.91 0.638 0.792 
L. Liepajas  26 2.58 0.81 0.500 0.549 
L. Sivers  81 3.24 1 0.625 0.833 
L. Usmas  78 3.28 0.93 0.631 0.846 

 
NA – total number of detected alleles, NRA - 
mean allelic richness, NRPA – private allelic 
richness, HO – observed heterozygosity, HE - 
expected heterozygosity 
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The observed and expected heterozygosity for 
all samples over the eight microsatellite loci 
varied from 0.500 (L.  Liepajas) to 0.638 (L. 
Kisezers) and from 0.549 (L. Liepajas) to 
0.846 (L. Usmas), respectively (Tab. 3).  The 
individual locus tests (for each sample) 
displayed that twelve cases out of 40 had 
significant deviations of genotype frequencies 
from Hardy - Weinberg equilibrium (HWE) 
before BFCs. A significant deviation from 
HWE was revealed for L. Usmas at five loci, 
for L. Sivers at four loci and for L. Kisezers 
for three loci. After BFCs significant 
deviations of genotype frequencies from HWE 
were revealed at five loci in samples from two 

different lakes. That is, heterozygosity deficits 
were detected at L. Sivers population at locus 
AangCT89 and in L. Usmas at loci AangCT53, 
AangCT67, AangCT76, AangCT89, which 
was indicated by Micro-Checker as caused by 
possible presence of null alleles.   
Altogether the number of alleles at each 
microsatellite locus was different. The greatest 
number of alleles (27) was found at locus 
AangCT67. The minimum numbers of alleles 
(9) were found at loci AangCT53, AangCT77 
and AangCT89 (data not shown). Tab. 4 shows 
details of analysed microsatellite loci for 
investigated samples. 
 

 
Table 4. The standard parameters of genetic variation at eight microsatellite loci in eel 
population in five Latvian lakes. 
 
Sample  AangCT53 AangCT59 AangCT67 AangCT68 AangCT76 AangCT77  AangCT89  AangCT80  

L. Aluksnes  
 

R 74 - 86 83 – 87 186 – 200 173 – 181 200 – 206 105 – 115 210 – 216 90 - 96 
N 2 2 2 2 2 2 2 2 
NA 3 3 2 3 3 2 2 3 
Ho 1.000 0.500 0.000 1.000 0.500 0.000 0.500 1.000 
He 0.625 0.625 0.500 0.625 0.625 0.500 0.375 0.625 

L. Kisezers  
 

R 78 – 90 77 – 91 178 – 230 171 – 183 200 – 220 103 – 217 208 – 220 74 - 108 
N 10 10 10 10 10 10 10 10 
NA 6 8 12 7 7 8 4 13 
Ho 0.700 0.600 0.800 0.600 0.500 0.800 0.200 0.900 
He 0.695 0.840 0.885 0.815 0.735 0.795 0.665 0.905 

L. Liepajas  
 

R 78 83 – 87 158 – 234 185 – 189 206 – 220 105 – 113 208 – 220 86 - 102 
N 3 3 3 3 3 3 3 3 
NA 1 2 5 2 4 5 3 4 
Ho 0.000 0.667 0.667 0.000 0.667 1.000 0.333 0.667 
He 0.000 0.444 0.778 0.444 0.667 0.778 0.611 0.667 

L. Sivers  
 

R 74 – 94 71 – 91 170 – 214 171 – 193 200 – 222 105 – 117 200 – 218 78 - 110 
N 20 20 20 20 20 20 20 20 
NA 8 11 12 10 9 7 8 16 
Ho 0.600 0.550 0.600 0.650 0.600 0.700 0.350 0.950 
He 0.761 0.785 0.874 0.863 0.809 0.854 0.814 0.908 

L. Usmas 

R 78 – 90 73 – 91 168 – 234 171 – 191 200 – 222 103 – 117 208 – 220 80 - 104 
N 22 22 22 22 22 22 22 22 
NA 6 8 17 11 9 8 7 12 
Ho 0.273 0.591 0.591 0.773 0.727 0.955 0.273 0.818 
He 0.761 0.859 0.936 0.863 0.861 0.857 0.793 0.888 

N - number of samples, NA - number of alleles at each locus, Ho - observed heterozygosity, 
He - expected heterozygosity. 
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Population structure and spatial variation 
 
The pairwise FST estimates of genetic 
differentiation between the studied European 
eel samples in five Latvian lakes are displayed 
in Tab. 5. The pair L. Sivers – L. Usmas 
displayed the smallest differentiation (0.009, p 
≤ 0.05), whereas the pair L. Liepajas – L. 
Alūksnes had the highest FST value (0.140, p ≤ 
0.05). Moderate values of genetic 

differentiation were revealed for L. Liepajas – 
L. Aluksnes, L. Liepajas – L. Kisezers, L. 
Liepajas – L. Sivers, and L. Liepajas – L. 
Usmas pairs (0.140, 0.070, 0.075 and 0.078 
accordingly). For all other pairs, little genetic 
differentiation was shown: the FST values 
varied from 0.009 to 0.045 (p ≤ 0.001) 
(Tab. 5).  
 

 
Table 5. FST values obtained during the pair comparison of European eel samples from the five 
Latvian lakes. 
 
 L. Aluksnes L. Kisezers L. Liepajas L. Sivers L. Usmas 
L. Aluksnes  * * ns ns 
L. Kisezers 0.037  ** ** ** 
L. Liepajas 0.140 0.070  ** ** 
L. Sivers 0.035 0.034 0.075  * 
L. Usmas 0.045 0.017 0.078 0.009  

 
ns - not significant, * P<0.05, ** P<0.01, *** P<0.001; a value lying in the range between 
0 and 0.05 indicates little genetic differentiation; a value between 0.05 and indicates 0.15, 
moderate differentiation; a value between 0.15 and 0.25 high differentiation; and values above 
0.25, very high genetic differentiation (Wright 1978, Hartl & Clark 2007). 
 
Bayesian clustering indicated that the most 
likely number of genetic clusters was 3. (K = 
3, Fig. 2), placing L. Kisezers and L. Usmas 

in the first cluster; L. Aluksnes and L. 
Liepajas in the second cluster; and L. Sivers 
in the third cluster.  

 
Figure 2. Bayesian clustering of all individuals using STRUCTURE (Hubisz et al., 2009) 
assuming three genetic clusters of individuals (K = 3) (1 –L. Aluksnes, 2 – L. Kisezers, 3 – L. 
Liepajas, 4 – L. Sivers, 5 – L. Usmas). In the STRUCTURE analysis black lines separate 
individuals from different sampling sites and each individual is represented by a thin vertical 
line, which is partitioned into K-colored segments representing individual's estimated 
membership fractions in K clusters. 
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In order to evaluate genetic distances between 
eels from investigated lakes a dendrogram 
based on pairwise Nei’s genetic distances 
(1983) was constructed (Fig. 3). Eels from L. 
Aluksnes was completely separated from eels 
in other studied lakes. Eels from L. Liepajas, 

Kisezers, Usmas and Sivers grouped into one 
cluster, and eels of L. Kisezers, Usmas and 
Sivers formed a sub cluster. of The eels from 
L. Sivers and Usmas were most closely 
related. 
 

Figure 3. Genetic differentiation of five studied samples from Latvian lakes as revealed by 
UPGMA tree using Nei et al. (1983) genetic distance (Da). Bootstrap support >50 is shown 
next to the branching points. 
 
DISCUSSION 
 
Understanding the genetic diversity of fish 
populations is critical to protecting rare 
communities and conserving unique local 
populations. Estimating the genetic structure 
of populations and identifying the causes of 
genetic differentiation and the factors that 
contribute to variation between and within 
populations is essential to understanding 
adaptation and is, therefore, a major goal of 
population and conservation genetics. The 
evaluation of genetic structure of the European 
eel population in waterbodies in Baltic 
Lakeland as an indicator to the general 
biodiversity and a tool for species 
conservation has only recently started (Oreha 
et al. 2023). 
 
This study used the microsatellite markers 
AangCT53, AangCT59, AangCT67, 
AangCT68, AangCT76, AangCT77, 
AangCT89 and AangCA80, which were 
developed specifically for Anguilla anguilla 
and showed successful cross-species 
amplification for nine different anguillid eel 
species (Wiegloss at al. 2008). Our detected 
allele sizes across all investigated loci did not 

exceed the previously reported ranges 
(Wiegloss et al. 2008). However, in this study, 
a narrower size range for some loci was 
revealed. For instance, in locus AangCT67 and 
AangCT80 the smallest size of alleles in our 
study were 158bp and 78bp compared with 
124bp and 74bp reported by Wiegloss et al. 
(2008). The allelic size range for locus 
AangCT76 in our study was between 200bp 
and 220bp compared with 196 – 232bp 
reported by the same authors. This study 
revealed a higher number of alleles in as the 
loci AangCT67 and AangCT80 (27 and 18 in 
the present study compared with the 
previously described 19 and 13). In all other 
investigated loci, the number of alleles was 
only one allele more (AangCT53, AangCT68 
and AangCT76) or less (AangCT77, 
AangCT89 and AangCT59) compared with the 
previously described results.  This indicate 
that the eels in studied Latvian lakes differ 
from eel stock from L. Constance in Germany 
(Wiegloss et al. 2014). 
 
The genetic diversity parameters of eels from 
L. Kisezers, Sivers and Usmas were similar, 
and eels from L. Aluksnes and L. Liepajas had 
smaller values. Most likely this is related to the 
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size of the analysed samples. The level of 
heterozygosity, as it is shown in Tab. 4, was 
quite high for all studied samples and 
significant deficit of heterozygosity after 
BFCs was revealed in only five out 40 cases. 
This can be explained in different ways. For 
instance, the reason for that may be the 
presence of nonamplified (null) alleles. The 
presence of null alleles in our study was 
identified in all loci with significant 
heterozygosity deficit (at L. Sivers population 
at locus AangCT89 and in L. Usmas at loci 
AangCT53, AangCT67, AangCT76, 
AangCT89). Previously, possibility of null 
allele was described to be in two of in present 
study chosen markers (AangCT67 and 
AangCT77). Thus, the presence of null alleles 
can explain heterozygosity deficit in two loci 
only in L. Usmas. One more reason could be 
the use of microsatellite primers developed for 
a related species can result in non–
amplifcation in the target species, as it was 
reported earlier for coregonid species (Rogers 
et al. 2007, Oreha & Škute 2022). However, in 
the present study the markers used were 
developed specifically for European eel 
(Anguilla anguilla). Another possibility is 
consequences of the Wahlund effect. The 
Wahlund effect is the lack of heterozygous 
genotypes in large populations as a result of 
the breakdown of panmixia, due to the fact that 
large populations consist of a few small 
subpopulations with insufficient numbers of 
individuals that are constantly inbreeding 
(Dharmarajan et al. 2013). Lack of 
heterozygous genotypes in eel population in 
this study possibly is a result of the intensive 
restocking program. The restocking plans 
were conducted in Latvia for a long time 
(Bajinskis et al. 2020). In studies of the 
parasite Anguillicoloides crassus in the 
European eel, Wielgoss et al (2010) 
investigated sensitivity of parasites to 
different immigration rates into local A. 
anguilla stocks for two separated river 
systems, which inferred that under natural 
recruitment, nematode samples meet Hardy-
Weinberg expectations for a single panmictic 
population. However, studies have shown that 

a strong Wahlund effect is most likely due to 
very recent population mixing under frequent 
restocking of young A. anguilla (Wiegloss et 
al. 2010). 
 
The Bayesian clustering (Fig. 2) showed that 
eel individuals could be partitioned into three 
distinct genetic groups (K=3). Possibly these 
groups reflect migration likelihood. For 
instance, native eel migration into and out of 
Lake Sivers is fully restricted, because of 
many watermill and HEP dams in the possible 
migration path. L. Usmas and L. Kisezers are 
not fully restricted for natural eel migration, 
because the possible migration path is shorter 
and there are not so many obstacles (Bajinskis 
et al. 2020). 
 
The UPGMA tree (Fig. 3) based on Nei’s 
(1983) genetic distances shows a little bit 
different grouping. For instance, eels from 
L. Sivers and Usmas were closely related. Eels 
from L. Aluksnes were completely separated 
from the eels from other lakes. The likely 
reason for that is presence in the sample from 
L. Aluksnes of eel individual, which was 
identified in previous research as American 
eel (Anguilla rostrata) using mtDNA markers. 
This was divided as anthropogenic invasion 
because natural migration for eels in L. Aluks-
nes is restricted (Oreha et al. 2023). 
Correlation between genetic and geographic 
distances was not revealed (r = 0.058, p = 
0.040). However, for natural migrating eels 
from Mediterranean Sea, Baltic Sea and North 
Sea, the correlation between genetic and 
geographic distance was highly significant (r 
= 0.462 and p, 0.007) (Wirth & Bernatchez 
2001). 
 
The pairwise FST values between eel samples 
from the five Latvian lakes reflect a quite high, 
mostly moderate genetic differentiation level 
(Tab. 5), which is not inherent for naturally 
migrated eels. In this study revealed FST values 
is much higher than in previous studies, where 
European eel populations from a number of 
coastal European countries were, the FST 
varied from 0.0004 to 0.084 (Dannewitz et al. 
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2005, Palm et al. 2009). Previous studies 
indicate that migrating eels have weak genetic 
structure. Comparing of southern eel 
populations (Mediterranean Sea) versus 
northern populations (Baltic and North Sea) 
Wirth and Bernatchez (2001) revealed FST 
values ranging from 0.003 to 0.005.  Similar 
values were described in other studies of eel 
populations (Daemen et al. 2001). Als et al 
(2011) shows that one age eels from different 
spawning sites in Sargasso Sea have FST 

=0.0011, but FST among glass eels from 
geographical locations ranging from Iceland 
in the north to Morocco in the south was FST = 
0.00024. The higher values of genetic 
differentiation revealed in the present study 
compared to previous studies are possibly the 
result of gene pool mixing after multiple 
restocking events and eel natural migration, 
where it still is possible.  
 
 
CONCLUSIONS 
 
The level of genetic variability differs among 
studied eel samples. The differences may be 
caused by such processes as genetic flow and 
genetic drift, which will influence allele 
frequencies in various ways. Changes may be 
observed on the level of population genetic 
variability and genetic structure as a result of 
regular, quite intensive restocking until recent 
time, invasion of parasites and the impact of 
intensive anthropogenic influence by the 
fishing. Our present results could be useful in 
the design and monitoring of conservation 
programs of eel in Latvian lakes. 
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