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1 General Information

Doctoral thesis contains 95 pages, 102 references, 123 figures, 6 tables.

Keywords and phrases: gene regulatory networks, mathematical modeling, phase por-
trait, periodic solutions, attractors, chaos.

Doctoral thesis

Object of research: a system of ordinary differential equations of the second and higher
orders, used in models of gene regulatory networks.

Aims of research: to obtain results on properties of a special system of ordinary dif-
ferential equations, making emphasis on attracting sets, their locations, dependence on
built-in parameters and types of interrelation between elements. Special attention is paid
to evolution of the system and prediction of its future behaviours.

The research tasks:

• overview of low-dimensional systems of ordinary differential equations (ODE), used
in models of genetic regulatory networks (GRN);

• collecting information on equilibria (critical points) of attracting nature in low-
dimensional systems;

• studying the nature of attractive equilibria in two-dimensional (2D) and three-
dimensional (3D) systems;

• derivation of formulas for calculating the characteristic numbers of critical points in
2D and 3D systems;

• finding attractors, other than equilibria, in three-dimensional (3D) systems;

• considering examples of 3D systems, which have attractors in the form of stable
periodic trajectories;

• considering examples of 3D systems, which exhibit chaotic behaviour of solutions;

• work with programs, detecting chaotic behavior on the basis of analysis of the
Lyapunov exponents;

• considering systems of order four (4D), formulas for characteristic numbers of critical
points;

• constructing examples of 4D systems, which have attractors in the form of stable
equilibria;

• constructing examples of 4D systems, which have attractors in the form of stable
periodic trajectories;
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• considering examples of 4D systems, which exhibit chaotic behaviour of solutions;

• visualization of 4D attractors by projecting them on low-dimensional subspaces of
the 4D phase space;

• considering examples of neuronal networks and detecting similarity in the corre-
sponding ODE-type models;

• construction of examples of 5D and 6D systems which possess periodic attractors;

• considering examples of 6D systems, which exhibit irregular behaviour of solutions;

• visualization of attractors of 5D and 6D systems by projecting them into a lower
dimension subspaces and considering graphs of components of solutions;

• overview of the results and outlining directions of future research.

Methods of research:

• classical techniques of mathematical analysis;

• comparison method;

• phase plane and phase space method;

• method of linearization around the trivial solution;

• perturbation method.

Main results: the results of the work were published in 23 scientific papers ([4], [48],
[57]-[77]). Six of them ([4], [59], [67], [68], [69], [70]) have been published in the journals
indexed in SCOPUS, three of them ([57], [66], [65]) were submitted to publish in the
journals indexed in SCOPUS and two ([58], [71]) were submitted to publish in Web of
Science journals. The results were communicated at several conferences of different levels:

1. Inna Samuilik, Nullcline method for research of GRN system critical points, The
78th Scientific Conference of the University of Latvia, (Riga, Latvia, February 28,
2020)

2. Felix Sadyrbaev, Svetlana Atslega, Inna Samuilik, On Controllability in Models
of Biological Networks, VIII International Conference on Science and Technology,
(Belgorod, Russia, September 24-25, 2020).

3. Inna Samuilik, Remark on four dimensional system arising in applications, The 79th
Scientific Conference of the University of Latvia, (Riga, Latvia, February 26, 2021).

4. Felix Sadyrbaev, Inna Samuilik, Mathematical modelling of genetic regulatory net-
works, 2. International Baku Scientific Research Conference, (Baku, Azerbaijan,
April 28-30, 2021).
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5. Inna Samuilik, Felix Sadyrbaev, Mathematical modelling of evolution of multidimen-
sional networks, 2. International Congress on Mathematics and Geometry, (Ankara,
Turkey, May 20, 2021).

6. Svetlana Atslega, Felix Sadyrbaev, Inna Samuilik, On modelling of complex net-
works, 20th International Scientific Conference Engineering for Rural Development,
(Jelgava, Latvia, May 27, 2021).

7. Inna Samuilik, Diana Ogorelova, Mathematical modelling of GRN using different
sigmoidal functions, 1st International Symposium on Recent Advances in Funda-
mental and Applied Sciences, (Erzurum, Turkey, September 10-12, 2021).

8. Felix Sadyrbaev, Inna Samuilik, On the hierarchy of attractors in dynamical mod-
els of complex networks, 19th International Conference of Numerical Analysis and
Applied Mathematics, (Rhodes, Greece, September 20-26, 2021)

9. Inna Samuilik, Felix Sadyrbaev, Valentin Sengileyev, Examples of periodic biological
oscillators, International Conference “Differential Equations, Mathematical Model-
ing and Computational Algorithm”, (Belgorod, Russia, October 25-29, 2021).

10. Felix Sadyrbaev, Inna Samuilik, Albert Silvans, On mathematical models of evolv-
ing networks, International Conference “Differential Equations and Related Topics,
24th joint session of Moscow Mathematical Society and I.G.Petrovskii Seminar”,
(Moscow, Russia, December 26-30, 2021).

11. Inna Samuilik, Felix Sadyrbaev, Diana Ogorelova, Mathematical modeling of three-
dimensional genetic regulatory networks using different sigmoidal functions, Interna-
tional liberty interdisciplinary studies conference, (NewYork, ASV, January 16-17,
2022).

12. Inna Samuilik, On a four-dimensional system of differential equations related to the
theory of gene regulatory networks, The 80th Scientific Conference of the University
of Latvia, (Riga, Latvia, February 25, 2022).

13. Inna Samuilik, Felix Sadyrbaev, A Note on Attractor Selection, The 5th Inter-
national Conference on Networking, Intelligent Systems and Security, (Bandung,
Indonesia, March 30-31, 2022).

14. Inna Samuilik, Felix Sadyrbaev, Svetlana Atslega, Mathematical modelling of non-
linear dynamic systems, 21st International Scientific Conference Engineering for
Rural Development, (Jelgava, Latvia, May 25-27, 2022).

15. Inna Samuilik, Genetic engineering-construction of a network of four dimensions
with a chaotic attractor, 58th International JVE Conference,(Ventspils, Latvia, Au-
gust 25-26, 2022).
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2 Preface

The Theory of ordinary differential equations (ODE in short) has emerged from appli-
cations and serves applications. First, problems of mechanical motion have led to the
second-order ODE. Recall Isaac Newton’s second law: force is equal to the product of
mass and acceleration. After that investigations by several renowned scientists yielded
the linear theory, stability theory, theory of periodic motions, etc. Closer to our times,
new branches of the theory have appeared. Among them, the theory of boundary value
problems (BVP) for ODE took a significant place. Riga and its universities have strong
traditions in this field. Pierce Bohl is known for the creation of fixed point theorems for
integral and differential equations. In the middle of the 20th century, Anatoliy Myshkis
had arrived in Riga to teach students, among them were Yurii Klokov and Arnol’d Lepin.
Y. Klokov went to Moscow State University, where he finished his doctoral studies under
the supervision of Professor Vladimir Nemyckii. His dissertation was devoted to BVP at
infinite intervals. Y. Klokov started to work in Riga Civil Aviation Engineers Institute
and was recognized by students as the best teacher. After some time he was invited to
join the new-born Computational center of Latvian State University, where he worked
for a long time. A. Lepin was conducting his research under the supervision of Professor
Anatoliy Myshkis. His dissertation also was devoted to BVP for nonlinear differential
equations. Y. Klokov and A. Lepin headed the scientific division which studied BVP and
related problems. This research is continued now in the Institute of Mathematics and
Computer Science of the University of Latvia. Y. Klokov and A. Lepin had many doc-
torate students and descendants. Some of them are still actively working in the field of
differential equations, applications, and mathematical modeling. Another direction in the
theory of differential equations was established by Professor Linard Reizins. This direc-
tion was aimed at the qualitative studies of ordinary differential equations. The problems
of structural stability and classification of critical points for higher order equations were
at the center of his and his student’s studies. It appears that Riga and Latvia had and
still have long-standing traditions in the field of the theory of ODE.

In 2015, when joining the group of Professor Alexander Shostak for the studies in the
field of telecommunication networks in the framework of a Europen project, the group of
mathematicians from Riga and Daugavpils was attracted by a new kind of problems, where
ordinary differential equations were involved. In the theory of telecommunication networks
very active group of Japanese mathematicians, among them, Yuki Koizumi, Masayuki
Murata, and others, proposed to use in the design of telecommunication networks the
principles of self-organization, that could be found in Nature. It was pointed out, that
in living organisms in any cell there exists a genetic regulatory network (GRN in short),
responsible, among others, for reactions to changes in the environment. It was emphasized,
that the mathematical model for GRN, which uses a system of ODE, can be used also
for the management and control of telecommunication networks. The so-called Virtual
Network Topology was proposed for the organization of a set of lightpaths, to establish a
mechanism for quick response and rearrangement of a telecommunication network in bad
conditions. A system of ODE, governing this process of rearrangement, had attracted the
attention of researchers in Institute of Mathematics and Computer Science, University of
Latvia and Daugavpils University. It appears that accumulated previous knowledge in
the theory of ODE and experience in the studies of ODE can be applied to new kind of
problems. It was the starting point of research in this direction.
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The system in the center of these studies is not easy, but it is in some sense symmet-
rical. It contains n ordinary differential equations of the form X ′ = F (WX − θ) − V X,
where the vector X is for unknowns, F is a vector of the so-called sigmoidal functions, W
is n×n matrix (it is called regulatory one), θ and V are the parameters. This system will
be denoted by S in this preface. It appeared first in the paper by Cowan-Vilson in the
study of neuronal networks of the human brain. It was used to model genetic networks,
and the meaning of X was different. It was associated with the protein expression of any
gene. By protein expression genes communicate with each other. Affecting a single gene
can affect the whole network. In system S the linear part describes the natural decay of
a network, where there is no interrelation between genes. Some authors introduce in this
model also other factors, such as stress. Generally speaking, the object of investigation
is a multi-parameter autonomous quasi-linear system of ordinary differential equations.
To the best of the author’s knowledge, this system was not studied sufficiently for dimen-
sions three and higher. One of the possible reasons is the lacking of theoretical results for
systems of this kind. In the last decade, many papers had appeared, interpreting system
S specifically. In the remarkable papers [10], [89] by Cornelius et al and Le-Zhi Wang et
al. the X vector was interpreted as the state vector for the genetic network. This vector
is time-dependent, X(t), and it goes to its limiting set or point. It is to be mentioned,
that the phase space for the system S has a time-invariant set Q with the property: any
trajectory of the system S which enters Q never escapes it. The existence of attracting
sets in Q follows. In the above interpretation, some diseases can be treated having in mind
that the respective state-vector X(t), therefore, is forced to go to the “wrong” attractor.
Since system S contains a lot of parameters, some of them are adjustable and can be used
to manage and control a network. Treatment of a disease then means redirecting of “bad”
trajectory to a “normal” attractor.

The above considerations were good motivations for the study of system S and its
attractor. The proposed promotional work contains achievements in this direction. Let
us list them.

1. The 2-dimensional systems were studied, using the nullclines method;

2. The 3-dimensional systems were studied, using the nullcline method and extensive
computational research; the main results are a) formulas for critical points of a 3D
system; b) multiple examples of periodic attractors;

3. The 4-dimensional systems were studied, using previously obtained results for 2-
dimensional systems; uncoupled 4D systems were constructed of two independent
2D-systems and various resulting combinations of attractors were studied; the main
results are a) formulas for critical points; b) periodic attractors for uncoupled 4D
systems; c) examples of periodic attractors; d) examples of perturbed 4D systems,
which are no longer uncoupled; some conclusions were made about attractors in
perturbed systems; d) an irregular behavior of solutions, tending to a 4D attractor,
was observed;

4. Some examples of the 5-dimensional systems were examined;

5. The 6-dimensional systems were studied; the main results are a) examples of 6D-
systems which were constructed of previously investigated three 2D systems; the
resulting system can have attractors of periodic nature; b) examples of 6D-systems
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which were constructed of previously investigated two 3D systems; the resulting sys-
tem can have attractors of periodic nature; c) examples of perturbed, and therefore
coupled, 6D systems were examined; some observations on the behavior of solutions
were made;

6. The 60-dimensional system was considered.

Generally, the work contains mainly computationally obtained results concerning systems
of the form S, their phase space, examples of attractors and many related facts. The
collection obtained results lay the foundation for further research into gene network models
to understand them and develop methods of management and control.

10



3 Gene regulatory network

Gene regulatory networks (GRN in short) exist in any cell of any living organism. GRN
regulates reactions to changes in the environment, controls the development of a cell, and
manages the functioning of any kind. Elements of GRN, called genes, can influence other
genes by sending proteins [43]. As a result of such influence, other genes can be activated
or inhibited.
Attempts to mathematically model the functioning of GRN are multiple, using various
mathematical objects and tools [26],[87]. To describe the evolution of a network, the most
appropriate approach is using differential equations.

The typical system is of the form

X ′ = F (WX − θ)− vX,

where X is the network state vector, F is a sigmoid nonlinearity with argument, trans-
formed by multiplication with the regulatory matrix W, vX is a natural decay in absence
of F.

Definition 3.1. A sigmoid function is a mathematical continuous function with the do-
main over all R having a characteristic “S-shaped” curve or sigmoid curve. The range of
a sigmoid function is (0, 1).

The name “Sigmoid” comes from the Greek letter Sigma, and when graphed, appears
as a sloping “S” across the y-axis. In general, a sigmoid function is monotonic and has a
first derivative.

Sigmoid function’s examples.

• The logistic function or logistic curve f(z) =
1

1 + e−µ(z−θ)
. The sigmoid logistic

function was introduced in a series of three papers by Pierre Francois Verhulst
between 1838 and 1847, who devised it as a model of population growth by adjusting
the exponential growth model.

• Gompertz curve or Gompertz function f(z) = e−e−µ(z−θ)

. The Gompertz model is
well known and widely used in many aspects of biology. It has been frequently used
to describe the growth of animals and plants, as well as the number or volume of
bacteria and cancer cells.

• The inverse trigonometric functions f(z) =
2

π
arctan[µ(z + θ)]. The inverse trigono-

metric functions are widely used in engineering, navigation, physics, and geometry.

• The hyperbolic tangent function f(z) =
1

2
tanh[z − 1] +

1

2
. The hyperbolic tangent

function is used in Artificial Neural networks.

• Hill function f(z) =
zµ

θµ + zµ
was introduced by Archibald Hill in 1910 to describe

the binding of oxygen to hemoglobin. Hill function is widely used in pharmacology,
biochemistry and physiology.
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Figure 1: The sigmoid logistic function.

Definition 3.2. A dynamical system is a system of equations describing the time evolution
of one or more dependent variables. Equations of motion can be modelled as differential
equations and difference equations [34].

Consider the n-dimensional dynamical system





dx1

dt
=

1

1 + e−µ1(w11x1+w12x2+...+w1nxn−θ1)
− v1x1,

dx2

dt
=

1

1 + e−µ2(w21x1+w22x2+...+w2nxn−θ2)
− v2x2,

...
dxn

dt
=

1

1 + e−µn(wn1x1+wn2x2+...+wnnxn−θn)
− vnxn,

(1)

where µn > 0, θn and vn > 0 are parameters and the coefficients wij are entries of the
so-called regulatory matrix

W =




w11 w12 ... w1n

w21 w22 ... w2n

...
wn1 wn2 ... wnn


 . (2)

The parameters of the GRN have the following biological interpretations:

• vi - degradation of the i-th gene expression product;

• wij - the connection weight or strength of control of gene j on gene i. Positive
values of wij indicate activating influences while negative values define repressing
influences;

• θi - influence of external input on gene i, which modulates the gene’s sensitivity of
response to activating or repressing influences.

Definition 3.3. The j′th nullcline is the geometric shape for which
dxj

dt
= 0. The critical

points of the system are located where all of the nullclines intersect. In a two-dimensional
linear system, the nullclines can be represented by two lines on a two-dimensional plot; in
a general two-dimensional system they are arbitrary curves.
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The nullclines for the system (1) are




x1 =
1

v1

1

1 + e−µ1(w11x1+w12x2+...+w1nxn−θ1)
,

x2 =
1

v2

1

1 + e−µ2(w21x1+w22x2+...+w2nxn−θ2)
,

...

xn =
1

vn

1

1 + e−µn(wn1x1+wn2x2+...+wnnxn−θn)
.

The linearized system for analyzing critical points is



u′1 = −v1u1 + µ1w11g1u1 + µ1w12g1u2 + ... + µ1w1ng1un,
u′2 = −v2u2 + µ2w21g2u1 + µ2w22g2u2 + ... + µ2w2ng2un,
...
u′n = −vnun + µnwn1gnu1 + µnwn2gnu2 + ... + µnwnngnun,

where

g1 =
e−µ1(w11x∗1+w12x∗2+...+w1nx∗n−θ1)

[1 + e−µ1(w11x∗1+w12x∗2+...+w1nx∗n−θ1)]2
,

g2 =
e−µ2(w21x∗1+w22x∗2+...+w2nx∗n−θ2)

[1 + e−µ2(w21x∗1+w22x∗2+...+w2nx∗n−θ2)]2
,

...

gn =
e−µn(wn1x∗1+wn2x∗2+...+wnnx∗n−θn)

[1 + e−µn(wn1x∗1+wn2x∗2+...+wnnx∗n−θn)]2

and (x∗1, x
∗
2, ..., x

∗
n) is a critical point.

One has

A− λI =

∣∣∣∣∣∣∣∣∣∣∣∣

µ1w11g1 − v1 − λ µ1w12g1 ... µ1w1ng1

µ2w21g2 µ2w22g2 − v2 − λ ... µ2w2ng2

...

µnwn1gn µnwn2gn ... µnwn3gn − vn − λ

∣∣∣∣∣∣∣∣∣∣∣∣

The characteristic values of a given critical point can be found by solving the equation
A− λI with respect to λ.

3.1 The parameter µ

Depending on the value of the parameter µ, the form of the sigmoid function changes. For
very small µ values the sigmoid function has a characteristic “S-shaped” curve or sigmoid
curve (see Figure 2). The parameter µ increases and the graph of the sigmoid function
changes from “S-shaped” curve to a piecewise linear curve (see Figure 3). Further, the
parameter µ continues to increase, but the graph of the sigmoid function is also the
piecewise linear curve (see Figure 4). Large values of µ make nullcline the piecewise
linear.
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Figure 2: µ = 2, θ = 0.5;
w11 = 0, w12 = −5, w21 =
3, w22 = 0
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Figure 3: µ = 15, θ = 0.5;
w11 = 0, w12 = −5, w21 =
3, w22 = 0
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Figure 4: µ = 100, θ = 0.5;
w11 = 0, w12 = −5, w21 =
3, w22 = 0

4 Two-dimensional (2D) systems

Consider the system





dx1

dt
=

1

1 + e−µ1(w11x1+w12x2−θ1)
− v1x1,

dx2

dt
=

1

1 + e−µ2(w21x1+w22x2−θ2)
− v2x2,

(3)

where µi and vi are positive.

System (3) contains ten parameters wij, µi, θi, vi. Changing any of these parameters
can essentially affect the properties of the system and solutions. The construction of the
characteristic equation is a nontrivial task.

The argument z of the sigmoid function is transformed by the regulatory (coefficient)
matrix

W =

(
w11 w12

w21 w22

)
. (4)

This matrix describes the interrelation of elements xi of a network. The structure of W
affects the properties of the system and its solutions.

The nullclines are given by the equations




x1 =
1

v1

1

1 + e−µ1 (w11x1+w12x2−θ1)
,

x2 =
1

v2

1

1 + e−µ2 (w21x1−w22x2−θ2)
.

(5)

The function f(z) =
1

1 + e−µz
is a sigmoid and it has the range of values (0, 1).

Therefore the first nullcline is in the strip {(x1, x2) : 0 < x1 < 1
v1

, x2 ∈ R} and the second
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one is in the strip {(x1, x2) : x1 ∈ R, 0 < x2 < 1
v2
}. Therefore all critical points are located

in the rectangle Q := {(x1, x2) : 0 < x1 < 1
v1

, 0 < x2 < 1
v2
}.

Proposition 4.1. There exists at least one critical point for the system (3).

Proposition 4.2. The vector field (x′1, x
′
2) defined by (3) is directed inward on the border

of the rectangle Q.

Proof. By inspection of the right-hand sides in (3), taking into account (5) and the range
of values of the functions f1(z) and f2(z). ¤
Corollary 4.1. Any trajectory of the system (3), entering Q will stay there for t > 0.

4.1 Linearized system

For the analysis of critical points, we need the linearized system. It takes the form

{
u′1 = −v1u1 + µ1w11g1u1 + µ1w12g1u2,
u′2 = −v2u2 + µ2w21g2u1 + µ2w22g2u2,

where

g1 =
e−µ1(w11x∗1+w12x∗2−θ1)

[1 + e−µ1(w11x∗1+w12x∗2−θ1)]2
,

g2 =
e−µ2(w21x∗1+w22x∗2−θ2)

[1 + e−µ2(w21x∗1+w22x∗2−θ2)]2

and (x∗1, x
∗
2) is a critical point under consideration. Notice that 0 < gi < 0.25 for i = 1, 2.

A =

∣∣∣∣
µ1w11g1 − v1 µ1w12g1

µ2w21g2 µ2w22g2 − v2

∣∣∣∣

A− λI =

∣∣∣∣
µ1w11g1 − v1 − λ µ1w12g1

µ2w21g2 µ2w22g2 − v2 − λ

∣∣∣∣
and the characteristic equation is

det|A− λI| = (µ1w11g1 − v1 − λ)(µ2w22g2 − v2 − λ)− (µ2w21g2)(µ1w12g1) =
µ1µ2w11w22g1g2 − µ1w11g1v2 − µ1w11g1λ− µ2w22g2v1 + v1v2 + v1λ− µ2w22g2λ+
v2λ + λ2 − µ1µ2w12w21g1g2 = λ2 + (v1 + v2 − µ1w11g1 − µ2w22g2)λ+
µ1µ2w11w22g1g2 − µ1w11g1v2 − µ2w22g2v1 − µ1µ2w12w21g1g2 + v1v2 = 0.

To simplify we can write the characteristic equation as

λ2 + Bλ + C = 0,

where
B = v1 + v2 − µ1w11g1 − µ2w22g2,

C = µ1µ2w11w22g1g2 − µ1w11g1v2 − µ2w22g2v1 − µ1µ2w12w21g1g2 + v1v2.
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4.2 Critical points

An attractor is a set of points in phase space that represent a stable set of final dynamics
for the system [81]. These dynamics are final in three senses. First, once the state of
the system or model is in this set, it does not leave this set. Second, all points of the
set are reached. Finally, any trajectory starting near enough to the attractor approaches
the attractor. For a simple continuous-time model, depending on the parameters, the
attractor can be a single point (a critical point), two points (a two-point cycle), four,
eight, or a larger finite number of points (a more complex cycle), a closed curve, or a
chaotic attractor [23].

Definition 4.1. An attractor is the limiting trajectory of the representing point in the
phase space, to which all initial modes tend [3].

Each attractor has a basin of attraction that contains all the initial conditions which
will generate trajectories joining asymptotically this attractor [2].

Definition 4.2. A self-excited attractor has a basin of attraction that is associated with
an unstable critical point [36].

Self-excited attractors can be localized numerically by the standard computational
procedure: after a transient process, a trajectory that starts in the neighborhood of an
unstable critical point (from a point on its unstable manifold) is attracted to the attractor
and traces it [36]. Classical attractors in Van der Pol, Rossler, Chua dynamical systems
are self-excited.

Definition 4.3. An attractor is called a self-excited attractor if its basin of attraction
intersects an open neighborhood of a critical point, otherwise it is called a hidden attractor
[11].

For a hidden attractor, its attraction basin is not connected with an unstable critical
point. For example, hidden attractors can be found in systems without equilibria or with
stable equilibria [11].

Definition 4.4. A limit cycle is a closed trajectory in phase space having the property
that at least one other trajectory spirals into it, either as time approaches to infinity or
as time approaches to negative infinity [17].

Proposition 4.3. A limit cycle can exist in nonlinear systems of ODE, the number of
equations in which is n ≥ 2.

Proposition 4.4. A closed trajectory has a critical point in its interior in space R2.

If it is a stable state of equilibrium (critical point), the attractor of the system will
be just a fixed point. If it is a stable periodic motion, then the attractor will be a closed
curve, called the limit cycle [3].

Set w11 = w22 = 0. The regulatory matrix is

W =

(
0 w12

w21 0

)
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and the system of differential equations takes the form




x′1 =
1

1 + e−µ1(w12x2−θ1)
− v1x1,

x′2 =
1

1 + e−µ2(w21x1−θ2)
− v2x2.

The characteristic equation is
λ2 + Bλ + C = 0, (6)

where
B = v1 + v2,

C = −µ1µ2w12w21g1g2 + v1v2.

4.2.1 Case 1

B2 > 4C, λ1,2 = −B

2
±

√
B2

4
− C > 0

B < 0 ⇒ λ1 > 0 ⇒ λ2 > 0.

Proposition 4.5. If B2 > 4C, λ1,2 > 0. The case stable node is impossible.

Consider

w11 = w22 = 0, B = v1 + v2, C = v1v2 − µ1µ2w12w21g1g2.

4.2.2 Case 2

B2 > 4C, B > 0, λ1,2 = −B

2
±

√
B2

4
− C

Case 2.1.

C > 0, 0 <
B2

4
− C <

B2

4
⇒ λ2 = −B

2
+

√
B2

4
− C < 0,

⇒ λ1 = −B

2
−

√
B2

4
− C < 0.

Proposition 4.6. If B2 > 4C, C > 0 ⇒ λ1,2 < 0, then only stable node is possible.

Consider
w11 = w22 = 0, B2 > 4C, C > 0

(v1 + v2)
2 > 4(v1v2 − µ1µ2w12w21g1g2), v1v2 − µ1µ2w12w21g1g2 > 0,

v1 = v2 = 1, 4 > 4(1− µ1µ2w12w21g1g2).

Example 1. Consider µ1 = 5, µ2 = 10, v1 = v2 = 1 and θ1 = 0.2, θ2 = 0.25. The
regulatory matrix is

W =

(
0 −4
−2 0

)
. (7)
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The characteristic equation for the critical point (0.2674; 0.0004) is (6), where B = 2,
C = 0.969076.

Solving the equation we have λ1 = −1.17585 and λ2 = −0.824148. The type of the critical
point is a stable node.
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y
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0.6
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1.0
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Figure 5: The phase portrait for the system (3) with
the regulatory matrix (7).

Case 2.2.

C < 0, λ1 < 0, λ2 = −B

2
+

√
B2

4
− C > 0.

Proposition 4.7. If B2 > 4C,C < 0 ⇒ λ1 < 0, λ2 > 0, then only saddle is possible.

Consider
ω11 = ω22 = 0, v1 = v2 = 1, µ1 = µ2 = µ,

4 > 4(1− µ2w12w21g1g2), 0 > −µ2w12w21g1g2.

Example 2. Consider µ1 = µ2 = 5, v1 = v2 = 1 and θ1 = 1.2, θ2 = 0.8. The regulatory
matrix is

W =

(
0 4
1 0

)
. (8)

The characteristic equation for the critical point (0.66; 0.33) is (6), where B = 2, C =
−3.98.

Solving the equation we have λ1 = −3.23 and λ2 = 1.23. The type of the critical point is
a saddle.
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Figure 6: The phase portrait for the system (3) with
the regulatory matrix (8).

4.2.3 Case 3

B2 < 4C, λ1,2 = −B

2
±

√
B2

4
− C ∈ C.

Consider
ω11 = ω22 = 0, (v1 + v2)

2 < 4(v1v2 − µ1µ2w12w21g1g2),

v2
1 + 2v1v2 + v2

2 < 4v1v2 − 4µ1µ2w12w21g1g2,

(v1 − v2)
2 < −4µ1µ2w12w21g1g2.

Proposition 4.8. If (v1 − v2)
2 < −4µ1µ2w12w21g1g2, then all critical points are focuses.

Corollary 4.2. The necessary condition for all critical points to be focuses is w12w21 < 0.

4.2.4 Case 4

B2 < 4C, −B

2
> 0 ⇒ B < 0.

Proposition 4.9. If w11 = w22 = 0, then B > 0 and no critical point is an unstable
focus.

B2 − 4C = (v1 + v2 − µ1w11g1 − µ2w22g2)
2−

−4(µ1µ2w11w22g1g2 − µ1w11g1v2 − µ2w22g2v1 − µ1µ2w12w21g1g2 + v1v2) =

= v2
1 + 2v1v2 − 2v1µ1w11g1 − 2v1µ2w22g2 + v2

2 − 2v2µ1w11g1 − 2v2µ2w22g2+

+µ2
1w

2
11g

2
1 + 2µ1w11g1µ2w22g2 + µ2

2w
2
22g

2
2 − 4µ1µ2w11w22g1g2 + 4µ1w11g1v2+
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+4µ2w22g2v1 + 4µ1µ2w12w21g1g2 − 4v1v2 =

= (−v1 + v2 + µ1w11g1)
2 + 2w22g2(µ2(v1 − v2 − µ1w11g1) + 2µ1w12w21g1) + µ2

2w
2
22g

2
2.

Example 3. Consider µ1 = µ2 = 10, v1 = v2 = 1 and θ1 = 1.2, θ2 = −0.7. The
regulatory matrix is

W =

(
0.5 2
−2 0.5

)
. (9)

The characteristic equation for the critical point (0.47; 0.47) is (6), where B = −0.48,
C = 24.66.

Solving the equation we have λ1 = 0.2474 − 4.96i and λ2 = 0.2474 + 4.96i. The type of
the critical point is an unstable focus. The periodic solution emerges.

x

x

y

y

0.2 0.4 0.6 0.8 1.0 1.2
x1

0.2

0.4

0.6

0.8

1.0

1.2

x2

Figure 7: The phase portrait for the system
(3) with the regulatory matrix (9). The
type of the critical point is an unstable fo-
cus.
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0.7

{x1, x2}

Figure 8: Solutions (x1(t), x2(t)) for the
system (3) with the regulatory matrix (9).

Proposition 4.10. Two-dimensional system of differential equations (3) can have nine
critical points if w2

11 + w2
22 > 0.

The respective example is on page 24.

Proposition 4.11. Suppose that elements w11 and w22 of the regulatory matrix (4) are
zeros. Then the maximal number of equilibria in system (3) is three. Exactly one and
exactly two critical points are possible.

Proposition 4.12. Suppose that elements w11 and w22 of the regulatory matrix (4) are
not zeros and elements w12 and w21 are of opposite signs. Then the Hopf bifurcation may
occur and the system (3) may have a limit cycle.

In the case where a stable limit cycle surrounds an unstable critical point, Hopfs
bifurcation is called supercritical, and when an unstable limit cycle surrounds a stable
critical point, Hopfs bifurcation is called subcritical [21].

Proposition 4.13. Periodic solutions in system (4) cannot exist if ∂f1

∂x1
+ ∂f2

∂x2
6= 0, where

f1 and f2 are the right sides of the equations in (4).
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Proof. w12 = α and w21 = β has not closed orbits in Q if w11 = w22 = 0.

∂
(

1
1+e−µ1(αx2−θ1) − v1x1

)

∂x1

+
∂

(
1

1+e−µ2(βx1−θ2) − v2x2

)

∂x2

= −v1 − v2 6= 0.

System (3) cannot have periodic orbits if w11 = w22 = 0, since the Bendixson criterium
for non-existence (of periodic orbits) is fulfilled. ¤

4.3 The behavior of the sigmoid function

Proposition 4.14. The θ and µ values do not change significantly the behavior of the
sigmoid function.

The case of w12 > 0, w21 > 0 is attributed to activation, the case of w12 < 0, w21 < 0
is interpreted as inhibition. Attractors in these cases typically are stable equilibria of the
type nodes. If w12w21 < 0, attracting sets in the form of stable focuses can appear. Even
limit cycles are possible, but only if w2

11 + w2
22 > 0.

Proposition 4.15. The parameters w12 and w21 change the behavior of the sigmoid func-
tions from activation to inhibition.

Changing w12 and w21 to the opposite numbers, the functions’ behavior changes from
activation-activation to inhibition-inhibition. Let us consider µ = 2, θ = 0.1 and we will
change the entries of matrix W .

• In Figure 9 the entries of matrix W are w11 = 4, w12 = 2, w21 = 3, w22 = 5. It is an
activation - activation.

• In Figure 10 the entries of matrix W are w11 = −4, w12 = 2, w21 = 3, w22 = 5. It is
an activation - activation.

• In Figure 11 the entries of matrix W are w11 = 4, w12 = −2, w21 = 3, w22 = 5. It is
an inhibition - activation.

• In Figure 12 the entries of matrix W are w11 = 4, w12 = 2, w21 = −3, w22 = 5. It is
an activation - inhibition.

• In Figure 13 the entries of matrix W are w11 = 4, w12 = 2, w21 = 3, w22 = −5. It is
an activation - activation.
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4.3.1 Activation-activation

Consider µ1 = µ2 = 2, v1 = v2 = 1 and θ1 = 0.3, θ2 = 0.5. The regulatory matrix is

W =

(
0 8
10 0

)
. (10)
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Figure 14: The phase portrait for the system (3)
with the regulatory matrix (10). One critical point.

Proposition 4.16. Three critical points are possible in the system (3).

Consider µ1 = µ2 = 5, v1 = v2 = 1 and θ1 = θ2 = 3. The regulatory matrix is

W =

(
0 8
10 0

)
. (11)

x

x

y

y
0.2 0.4 0.6 0.8 1.0 1.2

x1

0.2

0.4

0.6

0.8

1.0

1.2

x2

Figure 15: The phase portrait for the system (3) with
the regulatory matrix (11). Three critical points.

The types of critical points in Figure 15 are: the stable node, the saddle and the stable
node.

Proposition 4.17. Five critical points are possible in the system (3).
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Consider µ = 40, v1 = v2 = 1 and θ1 = θ2 = 2.5. The regulatory matrix is

W =

(
5 3
2 3

)
. (12)
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Figure 16: The phase portrait for the system (3) with
the regulatory matrix (12). Five critical points.

The types of critical points in Figure 16 are: 3 stable nodes and 2 saddles.

Proposition 4.18. Seven critical points are possible in the system (3).

Consider µ = 40, v1 = v2 = 1 and θ1 = θ2 = 2.5. The regulatory matrix is

W =

(
5 2.5
2 3

)
. (13)
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Figure 17: The phase portrait for the system (3) with
the regulatory matrix (13). Seven critical points.

The types of critical points in Figure 17 are: 3 stable nodes and 4 saddles.

Proposition 4.19. In the system (3) the maximal number of critical points is nine.
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Consider µ = 40, v1 = v2 = 1 and θ1 = θ2 = 2.5. The regulatory matrix is

W =

(
5 2.2
2 3

)
. (14)
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Figure 18: The phase portrait for the system (3) with
the regulatory matrix (14). Nine critical points.

The types of critical points in Figure 18 are: 4 stable nodes and 5 saddles.

4.3.2 Activation-inhibition

Proposition 4.20. The type of critical point in the system (3) is the stable focus.

Consider µ1 = µ2 = 2, v1 = v2 = 1 and θ1 = 2, θ2 = −1.5. The regulatory matrix is

W =

(
0 3
−7 0

)
. (15)

x

x

y

y
0.2 0.4 0.6 0.8 1.0 1.2

x1

0.2

0.4

0.6

0.8

1.0

1.2

x2

Figure 19: The phase portrait for the system (3) with
the regulatory matrix (15). The type of the critical
point is a stable focus.
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Consider µ1 = µ2 = 40, v1 = v2 = 1 and θ1 = 3, θ2 = 1. The regulatory matrix is

W =

(
5 2.2
−2 3

)
. (16)
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Figure 20: The phase portrait for the system (3) with
the regulatory matrix (16).

The types of critical points in Figure 20 are: 3 stable nodes and 2 saddles.

4.3.3 Inhibition-activation

Consider µ = 2, v1 = v2 = 1 and θ1 = θ2 = 0.1. The regulatory matrix is

W =

(
0 −8
10 0

)
. (17)

In the system (3) with the regulatory matrix (17) there exists only one critical point.
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Figure 21: The phase portrait for the system (3) with
the regulatory matrix (17). The type of the critical
point is a stable focus.

The type is the stable focus.
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Consider µ1 = µ2 = 40, v1 = v2 = 1 and θ1 = 0.5, θ2 = 0.1. The regulatory matrix is

W =

(
6 −5
2 0

)
. (18)

The types of critical points in Figure 22 are: 2 stable nodes and one saddle.
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Figure 22: The phase portrait for the system (3) with
the regulatory matrix (18).

4.4 Conclusions for two-dimensional systems

The following are true for the system (3):

• there is always an equilibrium state;

• the maximum number of equilibrium states (critical points), except for degenerate
cases, is nine;

• the structure of the set of critical points with their maximum number is the same
for all considered cases - four stable nodes, four saddles, and an unstable node in
center;

• any number of critical points from one to nine is possible;

• periodic solution of the system is possible;

• it is possible to control the system by changing the parameter values.
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5 Three-dimensional (3D) systems

Let us consider the system




dx1

dt
=

1

1 + e−µ1(w11x1+w12x2+w13xn−θ1)
− v1x1,

dx2

dt
=

1

1 + e−µ2(w21x1+w22x2+w23xn−θ2)
− v2x2,

dx3

dt
=

1

1 + e−µ3(w31x1+w32x2+w33x3−θ3)
− v3x3,

(19)

where µi, θi and vi are the parameters, wij are the coefficients of the so-called regulatory
matrix

W =




w11 w12 w13

w21 w22 w23

w31 w32 w33


 . (20)

The nullclines and the critical points for the system are defined by the relations




x1 =
1

v1

1

1 + e−µ1 (w11x1+w12x2+w13x3−θ1)
,

x2 =
1

v2

1

1 + e−µ2 (w21x1−w22x2+w23x3−θ2)
,

x3 =
1

v3

1

1 + e−µ2 (w21x1+w22x2+w33x3−θ3)
.

5.1 Linearized system

The linearized system for any critical point (x∗1, x
∗
2, x

∗
3) is





u′1 = −v1u1 + µ1w11g1u1 + µ1w12g1u2 + µ1w13g1u3,
u′2 = −v2u2 + µ2w21g2u1 + µ2w22g2u2 + µ2w23g2u3,
u′3 = −v3u3 + µ3w31g3u1 + µ3w32g3u2 + µ3w33g3u3,

where

g1 =
e−µ1(w11x∗1+w12x∗2+w13x∗3−θ1)

[1 + e−µ1(w11x∗1+w12x∗2+w13x∗3−θ1)]2
, (21)

g2 =
e−µ2(w21x∗1+w22x∗2+w23x∗3−θ2)

[1 + e−µ2(w21x∗1+w22x∗2+w23x∗3−θ2)]2
, (22)

g3 =
e−µ3(w31x∗1+w32x∗2+w33x∗3−θ3)

[1 + e−µ3(w31x∗1+w32x∗2+w33x∗3−θ3)]2
. (23)

One has

A− λI =

∣∣∣∣∣∣

µ1w11g1 − v1 − λ µ1w12g1 µ1w13g1

µ2w21g2 µ2w22g2 − v2 − λ µ2w23g2

µ3w31g3 µ3w32g3 µ3w33g3 − v3 − λ

∣∣∣∣∣∣
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and the characteristic equation is

det|A− λI| = −λ3 + λ2(−v1 − v2 − v3 + µ1w11g1 + µ2w22g2 + µ3w33g3) + λ(g1v3µ1w11+

+µ2w22g2v3 + g1g2w21µ1µ2w12 − g1g2w11w22µ1µ2 + g1g3w31w13µ1µ3−
−g1g3w11w33µ1µ3 + g2g3w32w23µ2µ3− g2g3w22w33µ2µ3− v1(v2 + v3− g2w22µ2− g3w33µ3)+

+v2(−v3+g1w11µ1+g3w33µ3))+v1(v2(−v3+g3w33µ3)+g2µ2(v3w22+g3w32w23µ3−g3w22w33µ3))+

+g1µ3(v2(v3w11 + g3(w31w13 − w11w33)µ3) + g2µ2(v3(w21w12 − w11w22)+

+g3(−w31w22w13+w21w32 w13+w31w12w23−w11w32 w23−w21w12w33+w11w22 w33)µ3)) = 0.

The characteristic equation can be rewritten as

−λ3 + Aλ2 + Bλ + C = 0, (24)

where
A = −(v1 + v2 + v3) + g1w11µ1 + g2w22µ2 + g3w33µ3,

B = µ1µ2w31w13g1g3 − µ2µ3w32w23g2g3 + µ1µ2w21w12g1g2

−(µ2w22g2 − v2)(µ3w33g3 − v3)− (µ1w11g1 − v1)(µ3w33g3 − v3)
−(µ1w11g1 − v1)(µ2w22g2 − v2),

C = (µ1w11g1 − v1)(µ2w22g2 − v2)(µ3w33g3 − v3) + µ1µ2µ3w21w32w23g1g2g3

+µ1µ2µ3w31w12w23g1g2g3 − µ1µ3w31w13g1g3(µ2w22g2 − v2)
−µ2µ3w32w23g2g3(µ1w11g1 − v1)− µ1µ2w21w12g1g2(µ3w33g3 − v3).

5.1.1 Facts

Proposition 5.1. The vector field (f1(x1, x2, x3), f2(x1, x2, x3), f3(x1, x2, x3)), where f1,
f2 and f3 are the right sides of the equations in (19), is directed inward on the boundary
of the domain Q3 := {(x1, x2, x3) : 0 < x1 < 1

v1
, 0 < x2 < 1

v2
, 0 < x3 < 1

v3
}.

Proof. Take one of faces of the parallelepiped Q3, for example, x1 = 0. The vector field

there in the x1 direction is f1− v1, x1 = f > 0. Take face x1 =
1

v1

. The vector field there

in the x1 direction is f1−v1, x1 = f1−v1,
1

v1

= f1 − 1 < 0. In both cases, the vector field

along the x1 axis is directed inside Q3. Similarly, other faces of Q3 can be considered.¤
Proposition 5.2. System (19) has at least one equilibrium (critical point). All equilibria
are located in the open box Q3 := {(x1, x2, x3) : 0 < x1 < 1

v1
, 0 < x2 < 1

v2
, 0 < x3 < 1

v3
}.
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5.2 Critical points

The three-dimensional system has three eigenvalues. Two main possibilities exist: either
the three eigenvalues are real or two of them are complex conjugates. A critical point is
stable if all eigenvalues have negative real parts; it is unstable if at least one eigenvalue
has positive real part.

• Node. All eigenvalues are real and have the same sign. The node is stable (unstable)
when the eigenvalues are negative (positive) [97].

• Saddle. All eigenvalues are real and at least one of them is positive and at least
one is negative. Saddles are always unstable [97].

• Focus−Node. It has one real eigenvalue and a pair of complex-conjugate eigen-
values, and all eigenvalues have real parts of the same sign. The critical point is
stable (unstable) when the sign is negative (positive) [97].

• Saddle− Focus. Negative real eigenvalue and complex eigenvalues with positive
real part (unstable focus), and positive real eigenvalue and complex eigenvalues with
negative real part (stable focus). This type of critical point is unstable [46].

5.3 Particular cases

5.3.1 Case 1

Let v1 = v2 = v3 = 1.

We have
det|A− λI| = −Λ3 + (µ1w11g1 + µ2w22g2 + µ3w33g3)Λ

2

+[µ1µ3g1g3(w31w13 − w11w33) + µ2µ3g2g3(w32w23 − w22w33)
+µ1µ2g1g2(w21w12 − w11w22)]Λ
−µ1µ2µ3g1g2g3(w11w32w23 + w21w12w33 + w31w22w13

−w11w22w33 − w12w23w31 − w13w21w32) = 0,

where Λ = λ + 1.

The characteristic equation is (24), where

A = −3 + g1w11µ1 + g2w22µ2 + g3w33µ3,

B = µ1µ2w12w21g1g2 − (−1 + g1w11µ1)(−1 + g2w22µ2) + µ1µ3w13w31g1g3 + µ2µ3w23w32g2g3

−(−1 + g1w11µ1)(−1 + g3w33µ3)− (−1 + g2w22µ2)(−1 + g3w33µ3),

C = g1g2g3w12w23w31µ1µ2µ3 + g1g2g3w13w21w32µ1µ2µ3 − g2g3w23w32(−1 + g1w11µ1)µ2µ3

− g1g3w13w31µ1(−1 + g2w22µ2)µ3 − g1g2w12w21µ1µ2 − (−1 + g3w33µ3)

+ (−1 + g1w11µ1)(−1 + g2w22µ2)(−1 + g3w33µ3).
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5.3.2 Case 2

Let w11 = w22 = w33 = 0. The regulatory matrix is

W =




0 w12 w13

w21 0 w23

w31 w32 0


 (25)

and the system of differential equations takes the form





x′1 =
1

1 + e−µ1(w12x2+w13x3−θ1)
− v1x1,

x′2 =
1

1 + e−µ2(w21x1+w23x3−θ2)
− v2x2,

x′3 =
1

1 + e−µ3(w31x1+w32x2−θ3)
− v3x3.

The linearized system for a critical point (x∗1, x
∗
2, x

∗
3) is then





u′1 = −v1u1 + µ1w12g1u2 + µ1w13g1u3,
u′2 = −v2u2 + µ2w21g2u1 + µ2w23g2u3,
u′3 = −v3u3 + µ3w31g3u1 + µ3w32g3u2,

where g1, g2, g3, given in (21) to (23), are adapted to the case of the regulatory matrix
(25).

The characteristic equation is

det|A− λI| = −λ3 + λ(g2g3w32w23µ2µ3 + g1µ1(g2w21w12µ2 + g3w31w13µ3))+

+g1g2g3(w21w32w13 + w31w12w23)µ1µ2µ3 = 0.

The characteristic equation can be rewritten as (24), where

A = −(v1 + v2 + v3),

B = −v1v2 − v1v3 − v2v3 + g1g2w12w21µ1µ2 + g1g3w13w31µ1µ3 + g2g3w23w32µ2µ3,

C = − v1v2v3 + g1g2v3w12w21µ1µ2 + g1g3v2w13w31µ1µ3 + g2g3v1w23w32µ2µ3 + g1g2g3w23w32µ2µ3

+g1g2g3w12w23w31µ1µ2µ3 + g1g2g3w13w21w32µ1µ2µ3.

5.3.3 Case 3

Let v1 = v2 = v3 = 1, w11 = w22 = w33 = 0. The regulatory matrix is

W =




0 w12 w13

w21 0 w23

w31 w32 0


 (26)
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and the system of differential equations takes the form





x′1 =
1

1 + e−µ1(w12x2+w13x3−θ1)
− x1,

x′2 =
1

1 + e−µ2(w21x1+w23x3−θ2)
− x2,

x′3 =
1

1 + e−µ3(w31x1+w32x2−θ3)
− x3.

The linearized system for a critical point (x∗1, x
∗
2, x

∗
3) is then





u′1 = −u1 + µ1w12g1u2 + µ1w13g1u3,
u′2 = −u2 + µ2w21g2u1 + µ2w23g2u3,
u′3 = −u3 + µ3w31g3u1 + µ3w32g3u2,

where g1, g2, g3, given in (21) to (23), are adapted to the case of the regulatory matrix
(26). The characteristic equation is

−Λ3 + BΛ + C = 0,

where Λ = λ + 1,

B = µ1µ3g1g3(w31w13) + µ2µ3g2g3(w32w23) + µ1µ2g1g2(w21w12),

C = µ1µ2µ3g1g2g3(w12w23w31 + w13w21w32).

5.4 Cardano formulas

Gerolamo Cardano (1501-1576) was an Italian mathematician, engineer, philosopher,
physician, astrologer. He published fundamental works on algebra, probability theory,
and mechanics, which had a huge impact on the development of science.

For further analysis let us recall the Cardano formulas applied to the equation

y3 + py + q = 0. (27)

It has complex roots if

Q :=
(p

3

)3

+
(q

2

)2

is positive. The complex roots are given by expressions

y2,3 = −a + b

2
± i(a− b)

√
3

2
,

where

a =
(
−q

2
+

√
Q

) 1
3
, b =

(
−q

2
−

√
Q

) 1
3

are real cubic roots satisfying a · b = −p
3
. The remaining real root of equation (27)

y1 = a + b is real.
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5.4.1 Case 1

The regulatory matrix is

W =




0 1 0
1 0 −1
0 −1 0


 .

The system is 



x′1 =
1

1 + e−µ1(x2−θ1)
− v1x1,

x′2 =
1

1 + e−µ2(x1−x3−θ2)
− v2x2,

x′3 =
1

1 + e−µ3(−x2−θ3)
− v3x3.

The linearized system for a critical point (x∗1, x
∗
2, x

∗
3) is then (v1 = v2 = v3 = 1)





u′1 = −u1 + µ1g1u2,
u′2 = −u2 + µ2g2u1 − µ2g2u3,
u′3 = −u3 − µ3g3u2,

where

g1 =
e−µ1(x∗2−θ1)

[1 + e−µ1(x∗2−θ1)]2
,

g2 =
e−µ2(x∗1−x∗3−θ2)

[1 + e−µ2(x∗1−x∗3−θ2)]2
,

g3 =
e−µ3(−x∗2−θ3)

[1 + e−µ3(−x∗2−θ3)]2
.

The characteristic equation is
−Λ3 + BΛ + C = 0, (28)

where Λ = λ + 1,
B = µ2µ3g2g3 + µ1µ2g1g2 > 0,

C = 0.

The equation (28) has three roots

Λ1 = 0, Λ2,3 = ±
√

B

and, consequently,
λ1 = −1, λ2,3 = −1±

√
B.

Proposition 5.3. If B > 1, then the respective critical point is a 3D-saddle; if B < 1,
then the critical point is a stable node.
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5.4.2 Case 2

The regulatory matrix is

W =




0 −1 0
1 0 −1
0 1 0


 .

The system takes the form





x′1 =
1

1 + e−µ1(−x2−θ1)
− v1x1,

x′2 =
1

1 + e−µ2(x1−x3−θ2)
− v2x2,

x′3 =
1

1 + e−µ3(x2−θ3)
− v3x3.

(29)

The linearized system for a critical point (x∗1, x
∗
2, x

∗
3) is (v1 = v2 = v3 = 1)





u′1 = −u1 − µ1g1u2,
u′2 = −u2 + µ2g2u1 − µ2g2u3,
u′3 = −u3 + µ3g3u2,

where

g1 =
e−µ1(−x∗2−θ1)

[1 + e−µ1(x∗2−θ1)]2
,

g2 =
e−µ2(x∗1−x∗3−θ2)

[1 + e−µ2(x∗1−x∗3−θ2)]2
,

g3 =
e−µ3(x∗2−θ3)

[1 + e−µ3(−x∗2−θ3)]2
.

The characteristic equation is
−Λ3 + BΛ + C = 0, (30)

where Λ = λ + 1,
B = −µ2µ3g2g3 − µ1µ2g1g2,

C = 0.

The equation (30) has three roots

Λ1 = 0, Λ2,3 = ±
√
−Bi

and, consequently,
λ1 = −1, λ2,3 = −1±

√
−Bi.

Proposition 5.4. A unique critical point of the system (29), where vi = 1, i = 1, 2, 3, is
a stable focus-node.
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Proof. Let us prove that a critical point is unique. Write the system of nullclines as





x1 =
1

1 + e−µ1(−x2−θ1)
:= f1(−x2),

x2 =
1

1 + e−µ2(x1−x3−θ2)
:= f2(x1,−x3),

x3 =
1

1 + e−µ3(x2−θ3)
:= f3(x2),

(31)

where fi are evident sigmoid functions. Any critical point is a solution of the system (31).
We can write the second equation as

x2 = f2(f1(−x2),−f3(x2)), (32)

where f2(η, ξ) =
1

1 + e−µ2(η+ξ−θ2)
. It is increasing function of x2 on the left in (32) and

decreasing function of x2 on the right. The graphs of both functions can intersect only
once. ¤

5.5 Chaos

Under chaos in ancient Greek mythology understood the pre-life confusion. Greek “chaos”
is the infinite first everyday mass, which subsequently gave rise to all the existing. Physi-
cists call this science - “nonlinear dynamics”, mathematicians - “chaos theory”, all the
rest - “nonlinear science”.

Chaos is a multifaceted phenomenon that is not easily classified or identified. There
is no universally accepted definition for chaos, but the following characteristics are nearly
always displayed by the solutions of chaotic systems [39].

Characteristics of chaos

• A characteristic of chaotic behavior is the existence of an attractor to which all
sufficiently nearby solutions converge, given sufficient time [23].

• A typical characteristic of chaotic solutions is the geometric form of the attractors.
The attractors typically are twisted and ‘strange’, meaning that they have fractional
(fractal) dimension, although this is not necessarily the case [23].

• Sensitivity to initial conditions [39].

Definition 5.1. A chaotic system is a deterministic system that exhibits irregular and
unpredictable behavior [47].

Research on chaotic systems had a practical effect since Edward Norton Lorenz established
chaos theory in 1963. Chaos should be expected to be a very common basic dynamical
state in a variety of systems. Chaotic dynamics is very important in different fields such
as robotics, economics, cryptography, chemistry, medicine (studying epilepsy to predict
seizures, taking into account the initial state of the organism) and biology (in the study
of uneven heart rate and an uneven number of diseases) [49].

Proposition 5.5. In dynamical systems that include three or more equations, there may
be even more unusual attractors, which are commonly called strange or chaotic attractors.
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Floris Takens (1940 - 2010) a Dutch mathematician known for contributions to the
theory of differential equations, the theory of dynamical systems, chaos theory and fluid
mechanics. Introduced the concept of a “strange attractor”. He was the first to show how
chaotic attractors could be learned by neural networks [7].

Proposition 5.6. It is possible to find a chaotic attractor in differential systems present-
ing chaotic behavior [55].

Definition 5.2. A strange attractor, (chaotic attractor, fractal attractor) is an attractor
that exhibits sensitivity to initial conditions [39].

Definition 5.3. A fractal is an object that displays self-similarity under magnification
and can be constructed using a simple motif (an image repeated on ever-reduced scales)
[39].

Such strange objects were identified in nature. Sunflowers and broccoli (Figure 24), sea
shells, fern, snowflakes (Figure 23), mountain chasms, coastlines, lightning bolts (Figure
25), tree branches, river beds, turbulent eddies, human vascular system. These fractal
geometries play a significant role in the characterization of chaotic dynamical processes,
fractal dimension is therefore an important attribute of such a process [34].

Figure 23: The picture from
www.esa.org Figure 24: Remark-

able Romanesco Broc-
coli. The picture from
www.gardenbetty.com

Figure 25: The picture from
www.zmescience.com

The Cantor set constitutes a fractal object. The concept of dimension has to be broadened
to include fractal geometries associated with chaotic dynamics [34].

Definition 5.4. The Cantor set or Cantor’s Middle Thirds set, is given by taking the
interval [0, 1] (set C0), removing the open middle third C1, removing the middle third of
each of the two remaining pieces C2, and continuing this procedure ad infinitum.

At the kth stage in the Cantor set, there will be N = 2k segments each of length
l = 3−k. If this process is continued to infinity, then

lim
k→∞

2k = ∞ and lim
k→∞

3−k = 0. [39]
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Figure 26: Sequential construc-
tion of the Cantor set.

The Koch Snowflake was created by the Swedish mathematician Niels Fabian Helge von
Koch in 1904. The Koch Curve is constructed by replacing a unit line segment with a

motif consisting of four line segments each of length
1

3
.

Figure 27: Sequential construc-
tion of a Koch snowflake.

At the kth stage in the Koch Curve, there will be N = 4k segments each of length l = 3−k.
If this process is continued to infinity, then

lim
k→∞

4k = ∞ and lim
k→∞

3−k = 0. [39]

Definition 5.5. A self-similar fractal has fractal dimension (or Hausdorff index) Df

given by

Df =
ln N(l)

− ln l
,

where l represents a scaling and N(l) denotes the number of segments of length l [39].

Definition 5.6. A fractal is an object that has noninteger fractal dimension. (This is an
alternative to Definition(5.3))[39].

The fractal dimension for the Cantor set is

Df =
ln 2

− ln 1
3

=
ln 2

ln 3
≈ 0.6309298

The Cantor set is denser than a point, but less dense than a line, because the dimension
of a point is zero, but dimension of the line is one.

The fractal dimension for the Koch Curve is

Df =
ln 4

− ln 1
3

=
ln 4

ln 3
≈ 1.2618595

The Koch Curve is denser than the line, but less dense than a plane, because the dimension
of the line is one, but the dimension of the plane is two.
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5.6 Lyapunov exponents

Aleksandr Lyapunov (1857 - 1918) is a mathematician and mechanic, academician of the
St. Petersburg Academy of Sciences. The most important achievement of the scientist
is the creation of a modern theory of the stability of equilibrium and the movement of
mechanical systems, determined by a finite number of parameters [98].

The Lyapunov exponents are an important tool for the characterization of an attractor
of a finite-dimensional nonlinear dynamic system and their excessive sensitivity to initial
conditions [19]. The Lyapunov exponent is an approach to detect chaos, and it is a
measure of the speeds at which initially nearby trajectories of the system diverge [47].

Relationships between the Lyapunov exponents and the properties and types of at-
tractors:

1. One-dimensional system. In this case only a stable fixed point can be an attractor.
There exists one negative Lyapunov exponent (LE in short) denoted by LE1 = (−).

2. Two-dimensional system. In 2D systems, there are two types of attractors: stable
fixed points and limit cycles. The corresponding LEs follow:

• (LE1, LE2) = (−,−) - stable point;

• (LE1, LE2) = (0,−) - stable limit cycle (one exponent is equal to zero).

3. Three-dimensional system. In 3D phase space, there exist four types of attractors:
stable points, limit cycles, 2D tori and strange attractors. The following set of LEs
characterizes possible dynamical situations to be met:

• (LE1, LE2, LE3) = (−,−,−) - stable fixed point;

• (LE1, LE2, LE3) = (0,−,−) - stable limit cycle;

• (LE1, LE2, LE3) = (0, 0,−) - stable 2D tori;

• (LE1, LE2, LE3) = (+, 0,−) - strange attractor.

Symbols (+, 0,−) mean that for the analyzed attractor, there is one direction in a 3D
space, where exponential stretching is exhibited, the second direction indicates neutral
stability, and the third one-exponential compression [6].

5.6.1 Properties of Lyapunov exponents

1. The number of Lyapunov exponents is equal to the number of phase space dimen-
sions, or the order of the system of differential equations. They are arranged in
descending order [79].

2. The largest Lyapunov exponent of a stable system does not exceed zero [47].

3. A chaotic system has at least one positive Lyapunov exponent, and the more positive
the largest Lyapunov exponent, the more unpredictable the system is [47].

4. To have a dissipative dynamical system, the values of all Lyapunov exponents should
sum to a negative number [79].
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5. A hyperchaotic system is defined as a chaotic system with at least two positive
Lyapunov exponents. Combined with one null exponent and one negative exponent,
the minimal dimension for a hyperchaotic system is four [86].

Proposition 5.7. Dissipative systems exhibit chaos for most initial conditions in a spec-
ified range of parameters. A conservative system exhibits periodic and quasi-periodic so-
lutions for most values of parameters and initial conditions, and can exhibit chaos for
special values only [79].

Proposition 5.8. Only dissipative dynamical systems have attractors [46].

Proposition 5.9. If the Jacobian of the vector field in ODE is negative then the system
is a dissipative [94].

In the thesis for Lyapunov exponents calculation the package “lce.m for Mathematica”
was used [99]. Another Wolfram Mathematica program “Lynch-DSAM.nb” was also used
to check the correctness of Lyapunov exponents calculation [39].

5.7 Examples

Example 1. The system (19) with the matrix

W =




0 2 0
2 0 0
0 0 1


 (33)

and µ1 = µ2 = 7, µ3 = 5, v1 = v2 = v3 = 1 and θ1 = 0.8, θ2 = 1.0, θ3 = 0.5 has nine
attractive critical points, which can be observed in Figure 28. Six of intersections of red
and green with blue surfaces, at the corners of a cube.

Figure 28: The visualization of nullclines and nine critical
points for the system (19) with the regulatory matrix (33).
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5.7.1 Periodic solutions

Example 2. The system (19) with the matrix

W =




k 0 −1
−1 k 0
0 −1 k


 . (34)

This matrix contains the inhibitor cycle (elements −1) and auto-activation (elements k).
For values k in the interval (0.36, 2), the 3D system has a periodic solution that attracts
other solutions [59].

The initial conditions are

x1(0) = 0.5; x2(0) = 0.5; x3(0) = 0.35.

Figure 29: Nullclines for the system (19)
with the regulatory matrix (34) x1 - red, x2

- green, x3 - blue, k = 1, µi = 5, θi = k−1
2

.

Figure 30: The periodic solution of the sys-
tem (19) with the regulatory matrix (34),
k = 1.
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t
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0.7
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0.9

{x1, x2, x3}

Figure 31: The graphs of xi(t), i = 1, 2, 3 for
the system (19) with the regulatory matrix
(34).

Figure 32: The periodic solution of the sys-
tem (19) with the regulatory matrix (34),
k = 0.5.
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Example 3. Consider µ1 = 5, µ2 = 15, µ3 = 5, v1 = v2 = v3 = 1 and θ1 = 1.2, θ2 =
0.5, θ3 = −0.6. The regulatory matrix of the system (19) is

W =




1 0 2
0 1 0
−2 0 1


 . (35)

The nullclines are depicted in Figure 33. There are exactly three critical points.

Figure 33: Nullclines x1 - red, x2 - green, x3 - blue of
the system (19) with the regulatory matrix (35).

The characteristic equation for critical point (0.537; 0.001; 0.346) is

−λ3 + Aλ2 + Bλ + C = 0, (36)

where A = −0.616403, B = −5.28938 and C = −5.61417.

Solving the equation we have λ1 = −0.99, λ2,3 = 0.188± 2.371i. The type of the critical
point is unstable saddle-focus.

The characteristic equation for critical point (0.537; 0.5; 0.346) is (36), where A =
3.125, B = −6.693 and C = 15.569.

Solving the equation we have λ1 = 2.75, λ2,3 = 0.187 ± 2.371i. The type of the critical
point is unstable focus-node.

The characteristic equation for critical point (0.537; 0.99; 0.346) is (36), where A =
−0.6164, B = −5.289 and C = −5.614.

Solving the equation we have λ1 = −0.995, λ2,3 = 0.187± 2.371i. The type of the critical
point is unstable saddle-focus.

There are three periodic solutions in Example 3. Periodic solutions are stable attrac-
tors. The solutions are depicted in Figure 34 and Figure 35.
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Figure 34: Example of two 3D limit cycles
in the system (19) with the regulatory ma-
trix (35).

Figure 35: Three periodic solutions of the
system (19) with the regulatory matrix
(35).

Assume now that w21 = 1 in the matrix (35). Then there is only one critical point
(0.5367; 0.9999998; 0.3464). The standard linearization analysis provides the characteristic
numbers λ1 = −0.999997, λ2,3 = 0.18762±2.37198i. The type of critical point is unstable
saddle-focus. The nullclines and one periodic solution are depicted consequently in Figure
36 and Figure 37.

Figure 36: Nullclines x1 - red, x2 - green,
x3 - blue of the system (19) with the reg-
ulatory matrix (35), w21 = 1.

Figure 37: Some trajectories, tending to
the periodic solution of the system (19)
with the regulatory matrix (35), w21 = 1.

Assume that w21 = 0.5 and w23 = −0.5 then the middle periodic solution disappears.
The nullclines and two periodic attractive solutions are depicted in Figure 38 and Figure
39.
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Figure 38: Nullclines x1 - red, x2 - green,
x3 - blue of the system (19) with the regu-
latory matrix (35),w21 = 0.5, w23 = −0.5.

Figure 39: Some trajectories, tending to
one of two periodic solutions of the sys-
tem (19) with the regulatory matrix (35),
w21 = 0.5, w23 = −0.5.

The dynamics of Lyapunov exponents are shown in Figure 40.
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Figure 40: LE1 = 0.01, LE2 = −0.47, LE3 = −0.81

5.8 Chaotic attractors

5.8.1 The quadratic jerk system

Consider 



dx1

dt
= x2,

dx2

dt
= x3,

dx3

dt
= −2x1 − x2 − 1.1x3 − 0.3x2

3 + x1x2.

(37)
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The initial conditions are

x1(0) = 0.1; x2(0) = 0.1; x3(0) = 0.1.

A chaotic attractor of the system (37) is shown in Figure 41.

Figure 41: The self-excited chaotic attrac-
tor of the system (37).
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Figure 42: The graphs of xi(t), i = 1, 2, 3, of
the system (37).

The respective three-dimensional system was considered in the article [38].

The dynamics of Lyapunov exponents are shown in Figure 43.
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Figure 43: LE1 = 0.08, LE2 = 0.00, LE3 = −1.18

There is one positive Lyapunov exponent that is why the self-excited attractor is
chaotic. The system is a dissipative dynamical system, because the values of all Lyapunov
exponents should sum to a negative number (LE1 + LE2 + LE3 = −1.1).
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5.8.2 The modified Das system

Consider

µ1 = µ2 = 7, µ3 = 13, v1 = 0.65, v2 = 0.42, v3 = 0.1, θ1 = 0.5, θ2 = 0.3, θ3 = 0.7 (38)

W =




0 1 −5.65
1 0 0.135
1 0.02 0.03


 . (39)

The initial conditions are

x1(0) = 0.3; x2(0) = 1.5; x3(0) = 0.2. (40)

The characteristic equation for critical point (0.370457; 1.59272; 0.222436) is

−λ3 + Aλ2 + Bλ + C = 0,

where A = −1.16152, B = −0.430187 and C = −0.688906.

Solving the equation we have λ1 = −1.2558, λ2,3 = 0.0471391 ± 0.739161i. The type of
critical point is an unstable saddle-focus. The system is chaotic in the sense that solutions
exhibit non-regular behavior. The self-excited chaotic attractor is depicted in Figure 44.

Figure 44: The self-excited chaotic attractor
of the system (19) with the regulatory matrix
(39).
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Figure 45: The graphs of xi(t), i = 1, 2, 3,
of the system (19) with the regulatory ma-
trix (39).

The respective three-dimensional system was studied in [13], [14].

Now we change the parameter w23 (that is, the third element in the second row)
in the regulatory matrix (39). The coordinates of a single critical point, values of the
characteristic numbers for this point, are provided. Computations are performed using
Wolfram Mathematica.
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Table 1. Results of calculations for the system (19) with regulatory matrix (39),
changing the parameter w23.

w23 x∗ y∗ z∗ Real λ Complex λ R part Complex λ im part

0.0 0.3651 1.4571 0.1989 -1.4269 0.1322 0.6634
0.05 0.3671 1.5057 0.2073 -1.3714 0.1047 0.6886
0.10 0.3691 1.5562 0.2161 -1.3069 0.0726 0.71698
0.12 0.3699 1.57699 0.2197 -1.2783 0.0583 0.7294
0.13 0.3703 1.5875 0.2215 -1.2634 0.0519 0.7359
0.132 0.3703 1.5895 0.2219 -1.2604 0.0494 0.7371
0.133 0.3704 1.5906 0.2221 -1.2589 0.0487 0.7378
0.134 0.3704 1.5917 0.2223 -1.2573 0.0479 0.7385
0.136 0.3705 1.5938 0.2226 -1.2589 0.0487 0.7378
0.137 0.3705 1.5948 0.2228 -1.2527 0.0456 0.7405
0.138 0.3706 1.5959 0.22299 -1.2512 0.0448 0.7412
0.139 0.3706 1.5969 0.2232 -1.2494 0.0441 0.7418
0.14 0.3706 1.59799 0.2234 -1.2481 0.0433 0.7425
0.145 0.3708 1.6033 0.2243 -1.2403 0.0394 0.7459
0.15 0.3710 1.6087 0.2252 -1.2324 0.0354 0.7493
0.16 0.3714 1.6192 0.2270 -1.2162 0.0274 0.7564
0.18 0.3721 1.6406 0.2308 -1.1826 0.0107 0.7711
0.19 0.3725 1.6514 0.2326 -1.1652 0.002 0.7787
0.20 0.3729 1.6622 0.2345 -1.1473 -0.0069 0.7867

Table 2. Lyapunov exponents for the system (19) with regulatory matrix (39), 8000
steps

w23 LE1 LE2 LE3 LE1 + LE2 + LE3

0.0 0.00228824 -0.133556 -1.03537 -1.16664
0.13 0.00174998 -0.0409256 -1.12505 -1.16423
0.132 0.00241997 -0.0284958 -1.13784 -1.16392
0.133 0.00405175 0.00091658 -1.16866 -1.1637
0.134 0.0200966 0.000487689 -1.18412 -1.16354
0.135 0.0162669 0.000848416 -1.18055 -1.16343
0.136 0.00335708 -0.0065914 -1.16009 -1.16332
0.137 -0.000688284 -0.0214113 -1.14116 -1.16326
0.19 -0.00174416 -0.0102177 -1.14928 -1.16124
0.20 -0.00816703 -0.0105543 -1.14236 -1.16108
1 -0.373617 -0.37358 -0.409939 -1.15714

Calculations showed the following:

• if 0 ≤ w23 < 0.132, then the system (39) has a periodic solution;

• if 0.133 < w23 ≤ 0.135, then the system (39) has a chaotic solution;

• if 0.136 < w23 ≤ 0.19, then the system (39) has a periodic solution;

• if w23 > 0.2, then the system (39) has a stable fixed point.
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Figure 46: The periodic solution of the
system (19) with the regulatory matrix
(39), w23 = 0.05.

200 400 600 800 1000 1200
t

0.5

1.0

1.5

{x1, x2, x3}

Figure 47: Solutions (x1(t), x2(t), x3(t)) of
the system (19) with the regulatory matrix
(39), w23 = 0.05.

Now let us change w32 values in the regulatory matrix (39).

Table 3. Results of calculations for the system (19) with regulatory matrix (39),
changing the parameter w32.

w23 x∗ y∗ z∗ Real λ Complex λ R part Complex λ im part

0.0 0.4092 1.7387 0.2449 -1.036 -0.0623 0.8666
0.01 0.3892 1.6656 0.2337 -1.1554 -0.0029 0.7966
0.03 0.3530 1.5213 0.2114 -1.3366 0.0873 0.6912
0.04 0.3368 1.4523 0.2007 -1.3996 0.1186 0.6507

Table 4. Lyapunov exponents for the system (19) with regulatory matrix (39), 8000
steps

w23 LE1 LE2 LE3 LE1 + LE2 + LE3

0.0 -0.063377 -0.0643758 -0.406599 -1.16067
0.01 -0.00456357 -0.00807802 -1.14848 -1.16113
0.02 0.0162669 0.000848416 -1.18055 -1.16343
0.03 0.0015434 -0.186553 -0.980366 -1.16538
0.04 0.00381232 -0.0985729 -1.07168 -1.16644

Calculations showed the following:

• if 0 ≤ w32 ≤ 0.01, then the system (39) has a stable fixed point;

• if w32 = 0.02, then the system (39) has a chaotic solution;

• if 0.03 ≤ w32 ≤ 0.04, then the system (39) has a periodic solution.

From calculations we see that small changes in parameter values change the behavior of
the system.
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5.9 Conclusions for three-dimensional systems

The following are true for the system (19):

• the three-dimensional system (19) can have attractors of various kinds;

• the three-dimensional system (19) can have a single attracting point, multiple stable
equilibria;

• the three-dimensional system (19) can have several stable periodic solutions, which
serve as attractors;

• the self-excited chaotic attractor is possible.

6 Four-dimensional (4D) systems

Consider four-dimensional system




dx1

dt
=

1

1 + e−µ1(w11x1+w12x2+w13x3+w14x4−θ1)
− v1x1,

dx2

dt
=

1

1 + e−µ2(w21x1+w22x2+w23x3+w24x4−θ2)
− v2x2,

dx3

dt
=

1

1 + e−µ3(w31x1+w32x2+w33x3+w34x4−θ2)
− v3x3,

dx4

dt
=

1

1 + e−µ4(w41x1+w42x2+w43x3+w44x4−θ4)
− v4x4.

(41)

The nullclines are given by




v1x1 =
1

1 + e−µ1(w11x1+w12x2+w13x3+w14x4−θ1)
,

v2x2 =
1

1 + e−µ2(w21x1+w22x2+w23x3+w24x4−θ2)
,

v3x3 =
1

1 + e−µ3(w31x1+w32x2+w33x3+w34x4−θ2)
,

v4x4 =
1

1 + e−µ4(w41x1+w42x2+w43x3+w44x4−θ4)
.

(42)

Critical points are solutions of the system (42).

6.1 Linearized system

The linearized system for critical point (x∗1, x
∗
2, x

∗
3, x

∗
4) is





u′1 = −v1u1 + µ1w11g1u1 + µ1w12g1u2 + µ1w13g1u3 + µ1w14g1u4,
u′2 = −v2u2 + µ2w21g2u1 + µ2w22g2u2 + µ2w23g2u3 + µ2w24g2u4,
u′3 = −v3u3 + µ3w31g3u1 + µ3w32g3u2 + µ3w33g3u3 + µ3w34g3u4,
u′4 = −v4u4 + µ4w41g4u1 + µ4w42g4u2 + µ4w34g4u3 + µ4w44g4u4,

where

g1 =
e−µ1(w11x∗1+w12x∗2+w13x∗3+w14x∗4−θ1)

[1 + e−µ1(w11x∗1+w12x∗2+w13x∗3+w14x∗4−θ1)]2
,
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g2 =
e−µ2(w21x∗1+w22x∗2+w23x∗3+w24x∗4−θ2)

[1 + e−µ2(w21x∗1+w22x∗2+w23x∗3+w24x∗4−θ2)]2
,

g3 =
e−µ3(w31x∗1+w32x∗2+w33x∗3+w34x∗4−θ3)

[1 + e−µ3(w31x∗1+w32x∗2+w33x∗3+w34x∗4−θ3)]2
,

g4 =
e−µ4(w41x∗1+w42x∗2+w43x∗3+w44x∗4−θ4)

[1 + e−µ4(w41x∗1+w42x∗2+w43x∗3+w44x∗4−θ4)]2
.

The characteristic equation is

λ4 + Aλ3 + Bλ2 + Mλ + L = 0, (43)

where
A = (v1 + v2 + v3 + v4)− g1w11µ1 − g2w22µ2 − g3w33µ3 − g4µ4w44,

B = v3v4 − g1v3w11µ1 − g1v4w11µ1 − g2v3w22µ2 − g2v4w22µ2 − g1g2w21w12µ1µ2

+ g1g2w11w22µ1µ2 − g3v4w33µ3 − g1g3w31w13µ1µ3 + g1g3w11w33µ1µ3

− g2g3w32w23µ2µ3 + g2g3w22w33µ2µ3 − g1g4w41µ1µ4w14 − g2g4w42µ2µ4w24

− g3g4w43µ3µ4w34 − g4v3µ4w44 + g1g4w11µ1µ4w44 + g2g4w22µ2µ4w44 + g3g4w33µ3µ4w44

+v2(v3+v4−g1w11µ1−g3w33µ3−g4µ4w44)+v1(v2+v3+v4−g2w22µ2−g3w33µ3−g4µ4w44),

M =− g1v3v4w11µ1 − g2v3v4w22µ2 − g1g2v3w21w12µ1µ2 − g1g2v4w21w12µ1µ2

+ g1g2v3w11w22µ1µ2 + g1g2v4w11w22µ1µ2 − g1g3v4w31w13µ1µ3

+ g1g3v4w11w33µ1µ3 − g2g3v4w32w23µ2µ3 + g2g3v4w22w33µ2µ3

+ g1g2g3w31w22w13µ1µ2µ3 − g1g2g3w21w32w13µ1µ2µ3 − g1g2g3w31w12w23µ1µ2µ3

+ g1g2g3w11w32w23µ1µ2µ3 + g1g2g3w21w12w33µ1µ2µ3 − g1g2g3w11w22w33µ1µ2µ3

− g1g4v3w41µ1µ4w14 + g1g2g4w41w22µ1µ2µ4w14 − g1g2g4w21w42µ1µ2µ4w14

+ g1g3g4w41w33µ1µ3µ4w14 − g1g3g4w31w43µ1µ3µ4w14 − g2g4v3w42µ2µ4w24

− g1g2g4w41w12µ1µ2µ4w24 + g1g2g4w11w42µ1µ2µ4w24 + g2g3g4w42w33µ2µ3µ4w24

− g2g3g4w32w43µ2µ3µ4w24 − g1g3g4w41w13µ1µ3µ4w34 + g1g3g4w11w43µ1µ3µ4w34

− g2g3g4w42w23µ2µ3µ4w34 + g2g3g4w22w43µ2µ3µ4w34 + g1g4v3w11µ1µ4w44

+ g2g4v3w22µ2µ4w44 + g1g2g4w21w12µ1µ2µ4w44 − g1g2g4w11w22µ1µ2µ4w44

+ g1g3g4w31w13µ1µ3µ4w44 − g1g3g4w11w33µ1µ3µ4w44 + g2g3g4w32w23µ2µ3µ4w44

− g2g3g4w22w33µ2µ3µ4w44 + v1(v3v4 − g2v3w22µ2 − g2v4w22µ2 − g3v4w33µ3

− g2g3w32w23µ2µ3 + g2g3w22w33µ2µ3 − g2g4w42µ2µ4w24

− g3g4w43µ3µ4w34 − g4v3µ4w44 + g2g4w22µ2µ4w44

+ g3g4w33µ3µ4w44 + v2(v3 + v4 − g3w33µ3 − g4µ4w44))

+ v2(v3(v4 − g1w11µ1 − g4µ4w44)− g1µ1(v4w11 + g3w31w13µ3 − g3w11w33µ3 + g4w41µ4w14

− g4w11µ4w44)− g3µ3(v4w33 + g4w43µ4w34 − g4w33µ4w44)),
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L = v1(v2(v3(v4 − g4µ4w44)− g3µ3(v4w33 + g4w43µ4w34 − g4w33µ4w44))

− g2µ2(v3(v4w22 + g4µ4(w42w24 − w22w44)) + g3µ3(v4(w32w23 − w22w33)

+ g4µ4(−w42w33w24 + w32w43w24 + w42w23w34 − w22w43w34 − w32w23w44 + w22w33w44))))

− g1µ1(v2(v3(v4w11 + g4µ4(w41w14 − w11w44)) + g3µ3(v4(w31w13 − w11w33)

+ g4µ4(−w41w33w14 + w31w43w14 + w41w13w34 − w11w43w34 − w31w13w44 + w11w33 w44)))

+ g2µ2(v3(v4(w21w12 − w11w22)

+ g4µ4(−w41w22w14 + w21w42 w14 + w41w12w24 − w11w42w24 − w21w12w44 + w11w22w44))

+ g3µ3(v4(−w31w22w13 + w21 w32w13 + w31w12w23 − w11 w32w23 − w21w12w33 + w11 w22w33)

+ g4µ4(−w21w42w33w14 + w21w32w43w14 + w11w42w33w24 − w11w32w43w24

+ w21w42w13w34 − w11w42w23w34 − w21w12w43w34 + w11w22w43w34

+ w41(−w32w23w14 + w22w33w14 + w32w13w24 − w12w33w24 − w22w13w34 + w12w23w34)

− w21w32w13w44 + w11w32w23w44 + w21 w12w33w44 − w11w22w33w44

+ w31(w42w23w14 − w22w43w14 − w42w13w24 + w12w43w24 + w22w13w44 − w12w23w44))))).

6.2 Critical points

The four-dimensional system has 4 eigenvalues.

• 4Dnode. All eigenvalues are real and have the same sign. The node is stable
(unstable) when the eigenvalues are negative (positive).

• 4Dstar. All eigenvalues are equal. The 4D star is stable (unstable) when the
eigenvalues are negative (positive).

• Saddle. All eigenvalues are real and at least one of them is positive and at least
one is negative. Saddles are always unstable.

• Focus−Node. It has two real eigenvalues and a pair of complex-conjugate eigen-
values, and all eigenvalues have real parts of the same sign. The critical point is
stable (unstable) when the sign is negative (positive).

• Node− Focus. It has two real negative eigenvalues and a pair of complex-conjugate
eigenvalues with positive real part. The critical point is unstable.

• Saddle− Focus. Two real eigenvalues have different signs and complex-conjugate
eigenvalues with positive or negative real part. The critical point is unstable.

• Focus− Focus. Two pairs of complex-conjugate eigenvalues. The critical point is
stable when the signs of real parts are negative. The critical point is unstable when
there is at least one positive real part.

49



6.3 Particular cases

6.3.1 Case 1

Let w11 = w22 = w33 = w44 = 0. The regulatory matrix is

W =




0 w12 w13 w14

w21 0 w23 w24

w31 w32 0 w34

w41 w42 w43 0


 (44)

and the system of differential equations takes the form





x′1 =
1

1 + e(w12x2+w13x3+w14x4−θ1)
− v1x1,

x′2 =
1

1 + e−µ2(w21x1+w23x3+w24x4−θ2)
− v2x2,

x′3 =
1

1 + e−µ3(w31x1+w32x2+w34x4−θ2)
− v3x3,

x′4 =
1

1 + e−µ4(w41x1+w42x2+w43x3−θ4)
− v4x4.

The linearized system for a critical point (x∗1, x
∗
2, x

∗
3, x

∗
4) is then





u′1 = −v1u1 + µ1w12g1u2 + µ1w13g1u3 + µ1w14g1u4,
u′2 = −v2u2 + µ2w21g2u1 + µ2w23g2u3 + µ2w24g2u4,
u′3 = −v3u3 + µ3w31g3u1 + µ3w32g3u2 + µ3w34g3u4,
u′4 = −v4u4 + µ4w41g4u1 + µ4w42g4u2 + µ4w34g4u3,

(45)

where

g1 =
e−µ1(w12x∗2+w13x∗3+w14x∗4−θ1)

[1 + e−µ1(w12x∗2+w13x∗3+w14x∗4−θ1)]2
, (46)

g2 =
e−µ2(w21x∗1+w23x∗3+w24x∗4−θ2)

[1 + e−µ2(w21x∗1+w23x∗3+w24x∗4−θ2)]2
, (47)

g3 =
e−µ3(w31x∗1+w32x∗2+w34x∗4−θ3)

[1 + e−µ3(w31x∗1+w32x∗2+w34x∗4−θ3)]2
, (48)

g4 =
e−µ4(w41x∗1+w42x∗2+w43x∗3−θ4)

[1 + e−µ4(w41x∗1+w42x∗2+w43x∗3−θ4)]2
. (49)

The characteristic equation is (43), where

A = v1 + v2 + v3 + v4,

B = v3v4 + v2(v3 + v4) + v1(v2 + v3 + v4) − g1g2w21w12µ1µ2 − g1g3w31w13µ1µ3

− g2g3w32w23µ2µ3 − g1g4w41µ1µ4w14 − g2g4w42µ2µ4w24 − g3g4w43µ3µ4w34,
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M =− g1g2v3w21w12µ1µ2 − g1g2v4w21w12µ1µ2 − g1g3v4w31w13µ1µ3 − g2g3v4w32w23µ2µ3

−g1g2g3w21w32w13µ1µ2µ3 − g1g2g3w31w12w23µ1µ2µ3 − g1g4v3w41µ1µ4w14

−g1g2g4w21w42µ1µ2µ4w14g1g3g4w31w43µ1µ3µ4w14 − g2g4v3w42µ2µ4w24

− g1g2g4w41w12µ1µ2µ4w24 − g2g3g4w32w43µ2µ3µ4w24 − g1g3g4w41w13µ1µ3µ4w34

−g2g3g4w42w23µ2µ3µ4w34 + v2(v3v4 − g1µ1(g3w31µ3w13 + g4w41µ4w14)− g3g4w43µ3µ4w34)

+v1(v3v4 + v2(v3 + v4)− g2g3w32w23µ2µ3 − g2g4w42µ2µ4w24 − g3g4w43µ3µ4w34),

L = v1(v2(v3(v4 − g3g4µ3µ4w34)− g2µ2(g4v3w42w24µ4(v4w32w23 + g4µ4(w32w43w24 + w42w23w34))))

−g1µ1(v2(g4v3µ4(w41w14 + g3µ3(v4(w31w13 + g4µ4(w31w43w14 + w41w13w34)))

+g2µ2(v3(v4w21w12 + g4µ4(w31w42w14 + w41w12w24)) + g3µ3(v4(w31w32w13 + w31w12w23)

+g4µ4(w31w32w43w14 + w31(w42w23w14 − w42w13w24 + w12w43w24) + w21w42w13w34

+w41(−w32w23w14 + w12w13w24 + w12w23w34))))).

Example 1. Consider µ1 = µ2 = µ3 = 8, µ4 = 15, v1 = 0.1, v2 = 0.3, v3 = 1, v4 = 0.4
and θ1 = 1.2, θ2 = −0.7, θ3 = 1.8, θ4 = −0.2.

W =




0 1 0 −1
0.3 0 1 0.4
0 1 0 1

0.2 1 −1 0


 . (50)

The characteristic equation for critical point (0.5053; 3.3333; 0.9999; 2.5) is (43), where
A = 1.8, B = 0.99, M = 0.202 and L = 0.012.

Solving the equation we have λ1 = −0.1, λ2 = −0.3, λ2 = −0.4 and λ4 = −1. The type
of the critical point is a 4D stable node.

6.3.2 Case 2

Let v1 = v2 = v3 = v4 = 1 and the regulatory matrix is (44).

The system of differential equations takes the form




x′1 =
1

1 + e(w12x2+w13x3+w14x4−θ1)
− x1,

x′2 =
1

1 + e−µ2(w21x1+w23x3+w24x4−θ2)
− x2,

x′3 =
1

1 + e−µ3(w31x1+w32x2+w34x4−θ2)
− x3,

x′4 =
1

1 + e−µ4(w41x1+w42x2+w43x3−θ4)
− x4.

The linearized system for a critical point (x∗1, x
∗
2, x

∗
3, x

∗
4) is then





u′1 = −u1 + µ1w12g1u2 + µ1w13g1u3 + µ1w14g1u4,
u′2 = −u2 + µ2w21g2u1 + µ2w23g2u3 + µ2w24g2u4,
u′3 = −u3 + µ3w31g3u1 + µ3w32g3u2 + µ3w34g3u4,
u′4 = −u4 + µ4w41g4u1 + µ4w42g4u2 + µ4w34g4u3
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and g1, g2, g3, given in (46) to (49).

The characteristic equation is (43), where

A = 4,

B = 6 − g1g2w21w12µ1µ2 − g1g3w31w13µ1µ3 − g2g3w32w23µ2µ3 − g1g4w41µ1µ4w14

−g2g4w42µ2µ4w24g3g4w43µ3µ4w34,

M = 4 − 2g1g2w12w21µ1µ2 − g1g3w13w31µ1µ3 − 2g2g3w23w32µ2µ3 − g1g2g3w12w23w31µ1µ2µ3

−g1g2g3w13w21w32µ1µ2µ3 − g1g4w41µ1µ4w14 − 2g2g4w24µ2µ4w42 − g1g2g4w41w12µ1µ2µ4w24

−g1g2g4w14w21µ1µ2µ4w424 − 2g3g4w34w43µ3µ4 − g1g3g4w13w34µ1µ3µ4w41

−g1g3g4w14w31µ1µ3µ4w43 − g2g3g4w23w34µ2µ3µ4w42 − g2g3g4w24w32µ2µ3µ4w43

−g1µ1(g3w13w31µ3 + g4w14w41µ4),

L = 1 − g3g4w34w43µ3µ4 − g2µ2(g4w24w42µ4 + g3µ3(w23w32 + g4(w23w34w42 + w24w32w43µ4))

−g1µ1(g4w14w41µ4 + g3µ3(w13w31 + g4(w13w34w41 + w14w31w43µ4)

+g2µ2(w12w21 + g4(w12w24w41 + w14w21w42)µ4 + g3µ3(w12w23w31 + w13w21w32

+g4((−w14w23w32 + w13w24w32 + w12w23w34)w41 + w13w21w34w42 + w14w21w32w43

−w12w21w34w43 + w31(w14w23w42 − w13w24w42 + w12w24w43))µ4))).

Example 2. Consider µ1 = µ2 = µ3 = 8, µ4 = 15, v1 = v2 = v3 = v4 = 1, θ1 = 1.2, θ2 =
−0.7, θ3 = 1.8, θ4 = −0.2 and the regulatory matrix is (50).

The characteristic equation for critical point (0.0000698; 0.9999; 0.8278; 0.9963) is (43),
where A = 4, B = 6.06384, M = 4.12768 and L = 1.06384.

Solving the equation we have λ1 = −1.00003, λ2 = −0.999969 and λ2,3 = −1 ± 0.2527i.
The type of the critical point is a stable focus-node.

6.3.3 Case 3

Let v1 = v2 = v3 = v4 = 1 and the regulatory matrix is

W =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (51)

and the system of differential equations takes the form




x′1 =
1

1 + e−µ1(w11x1−θ1)
− x1,

x′2 =
1

1 + e−µ2(w22x2−θ2)
− x2,

x′3 =
1

1 + e−µ3(w33x3−θ2)
− x3,

x′4 =
1

1 + e−µ4(w44x4−θ4)
− x4.
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The linearized system for critical point (x∗1, x
∗
2, x

∗
3, x

∗
4) is





u′1 = −u1 + µ1w11g1u1,
u′2 = −u2 + µ2w22g2u2,
u′3 = −u3 + µ3w33g3u3,
u′4 = −u4 + µ4w44g4u4,

where

g1 =
e−µ1(w11x∗1−θ1)

[1 + e−µ1(w11x∗1−θ1)]2
,

g2 =
e−µ2(w22x∗2−θ2)

[1 + e−µ2(w22x∗2−θ2)]2
,

g3 =
e−µ3(w33x∗3−θ3)

[1 + e−µ3(w33x∗3−θ3)]2
,

g4 =
e−µ4(w44x∗4−θ4)

[1 + e−µ4(w44x∗4−θ4)]2
.

The characteristic equation is (43), where

A = 4− g1µ1 − g2µ2 − g3µ3 − g4µ4,

B = 6 − 3g1µ1 − 3g2µ2 + g1g2µ1µ2 − 3g3µ3 + g1g3µ1µ3 + g2g3µ2µ3 − 3g4µ4

+g1g4µ1µ4 + g2g4µ2µ4 + g3g4µ3µ4,

M = 4 − 2g1µ1 − 3g2µ2 + 2g1g2µ1µ2 − 2g3µ3 + g1g3µ1µ3 + 2g2g3µ2µ3 − g1g2g3µ1µ2µ3

−3g4µ4 + g1g4µ1µ4 + 2g2g4µ2µ4 − g1g2g4µ1µ2µ4 + g3g4µ3µ4 − g1g3g4µ1µ3µ4

−g2g3g4µ2µ3µ4 − g3µ3(1− g4µ4)− g1µ1(1− g3µ3 − g4µ4),

L = 1 − g4µ4 − g3µ3(1− g4µ4)− g2µ2(1− g4µ4 + g3µ3(−1 + g4µ4))

−g1µ1(1− g4µ4 + g3µ3(−1 + g4µ4) + g2µ2(−1 + g4µ4 + g3µ3(1− g4µ4))).

Example 3. Consider µ1 = µ2 = µ3 = 8, µ4 = 15, v1 = v2 = v3 = v4 = 1, θ1 = 1.2, θ2 =
−0.7, θ3 = 1.8, θ4 = −0.2 and the regulatory matrix is (51).

The characteristic equation for a critical point
(0.0000678; 0.999999; 5.57393 · 10−7; 0.0.99999) is (43), where A = 3.99944, B = 5.99833,
M = 3.99833 and L = 0.999443.

Solving the equation we have λ1,2,3,4 = −0.999861. The type of the critical point is a
stable 4D star.
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6.4 Lyapunov exponents

Relationships between the Lyapunov exponents and the properties and types of attractors:

• (LE1, LE2, LE3, LE4) = (−,−,−,−) - stable fixed point;

• (LE1, LE2, LE3, LE4) = (0,−,−,−) - periodic solutions (limit cycles);

• (LE1, LE2, LE3, LE4) = (0, 0,−,−) - quasiperiodic solution;

• (LE1, LE2, LE3, LE4) = (+, 0,−,−) - strange attractor;

• (LE1, LE2, LE3, LE4) = (+, +, 0,−) - hyperchaotic attractor [40].

6.5 Artificial Neural Networks

An artificial neural network (ANN) is a computational architecture for processing complex
data using multiple interconnected processors and computational paths. Artificial neural
networks, created by analogy with the human brain, can train and analyze large and
complex data sets that are extremely difficult to process using more linear algorithms.

In 1943 American neurophysiologist and cybernetician Warren Sturgis McCulloch and
American logician Walter Harry Pitts modeled a neuron as a switch that receives input
from other neurons and, depending on the total weighted input, is either activated or
remains inactive [31],[22].

In 1958 ANN was created by psychologist Frank Rosenblatt. It was called Perceptron
and was designed to simulate the activity of the human brain in processing visual data
and in learning to recognize objects. Subsequently, similar artificial neural networks were
developed to study the process of cognition Over time, it became clear that in addition
to analyzing the activity of the human brain, it can perform other very useful functions.
Because of their ability to pattern-match and learn, these networks have been used to
analyze many problems that are extremely difficult or impossible to solve using traditional
computational or statistical methods [18].

In the late 80s, artificial neural networks began to be actively used for a variety of
purposes [22]. For example, are used in the economy to increase the productivity of
discount calculation, targeted marketing, and credit evaluation.

The principle of operation of an artificial neural network is to form connections between
many different processing elements, each of which serves as an analog of one neuron in
the brain of a biological being. Neurons can be physically reproduced or simulated using
a digital computer. Each neuron receives a set of input signals, and then, taking into
account the internal system of weight coefficients, generates one output signal, which, as
a rule, serves as input for another neuron. Neurons are closely interconnected with each
other and are organized into several different levels. The input layer receives the input
data, and the output layer generates the final result. Typically, there are one or more
hidden levels between these two levels. In such a structure, it is impossible to predict or
know exactly how data is transmitted.

Definition 6.1. An Artificial Neural Network is a mathematical model that tries to sim-
ulate the structure and functionalities of biological neural networks. A basic building block
of every artificial neural network is an artificial neuron, that is, a simple mathematical
model (function) [83].
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Figure 48: The example of ANN construction [37].

Neural networks consist of neurons interconnected, so the neuron is the main part of
the neural network. The neurons only do two things: multiply the inputs by the weights
and sum them up and add the bias, and the second action is the activation.

The input data is the data that the neuron receives from previous neurons or the user.
Weights are assigned to each input of the neuron, initially, they are assigned random
numbers. When training a neural network, the value of neurons and biases changes. The
weights are multiplied by the input data that is fed to the neuron. The biases are assigned
to each neuron, just like the initial bias weights, these are random numbers. Bias makes
it easier and faster to train a neural network [18]. Typically this transformation involves
the use of a sigmoid, hyperbolic-tangent, or other nonlinear function [93].

One example of which is

x′i = tanh
N∑

j=1

ajxj − bixi, (52)

where N is the number of neurons, each of which represents a dimension of the system
[81]. The hyperbolic tangent is a sigmoid function.

Consider the system




x′1 = tanh(x1 + x2 + x3 + x4)− bx1,
x′2 = tanh(x1 + x2 + x3 + x4)− bx2,
x′3 = tanh(x1 + x2 + x3 + x4)− bx3,
x′4 = tanh(x1 + x2 + x3 + x4)− bx4

(53)

with the regulatory matrix

W =




0 −1 0 1
1 0 0 1
1 1 0 −1
0 −1 1 0


 (54)

and b = 0.03.
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The initial conditions are

x1(0) = 1.2; x2(0) = 0.4; x3(0) = 1.2; x4(0) = −1.

The graph of the regulatory matrix (54) is presented in Figure 49.

Figure 49: The graph, corresponding to the system (53),
with the regulatory matrix (54).

The attractor is shown in Figure 50 and Figure 51 and the solutions in Figure 52 and
Figure 53.
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Figure 50: The projection of the attractor on
2D subspace (x1(t), x2(t))

Figure 51: The projection of the attrac-
tor on 3D subspace (x1(t), x2(t), x3(t))
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Figure 52: Solutions (x1(t), x2(t)) of the
system (53) with the regulatory matrix
(54).
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Figure 53: Solutions (x3(t), x4(t)) of the
system (53) with the regulatory matrix
(54).

For specific parameters solution of the system has a chaotic trajectory as shown in
Figure 54 and Figure 55. The minimal dissipative artificial neural network that exhibits
chaos has N = 4 and is given by system (53) with the regulatory matrix (54) and b = 0.043
and an attractor as shown in Figure 56 and Figure 57 [81].
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Figure 54: Solutions (x1(t), x2(t)) of the
system (53) with the regulatory matrix
(54), b = 0.043.
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Figure 55: Solutions (x3(t), x4(t)) of the
system (53) with the regulatory matrix
(54), b = 0.043.
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Figure 56: The projection of the attractor
on 2D subspace (x1(t), x2(t))

Figure 57: The projection of the attractor on
3D subspace (x1(t), x2(t), x3(t))
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The dynamics of Lyapunov exponents are shown in Figure 58.
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Figure 58: LE1 = 0.03, LE2 = 0.01, LE3 = −0.09, LE4 = −0.13

6.6 4D system from 2D and 2D systems

Let us return to the GRN system (41).

Example 1. Consider

W =




k1 2 0 0
−2 k1 0 0
0 0 k2 2
0 0 −2 k2


 , (55)

where k1 and k2 are positive numbers.

The system then is uncoupled, consisting of two independent 2D systems. Each of these
2D systems is known to have a stable periodic trajectory, which surrounds an unstable 2D
focus. The 4D system has the self-excited attractor, which is the product of two stable
2D limit cycles.

Example 2. Consider the system (41) with the regulatory matrix (55), where k1 = 0.5
and k2 = 1.815 and µ1 = µ2 = µ3 = µ4 = 10, v1 = v2 = v3 = v4 = 1, θ1 = 1.2, θ2 =
−0.7, θ3 = 1.8, θ4 = −0.28.

The initial conditions are

x1(0) = 0.5; x2(0) = 0.32; x3(0) = 0.4; x4(0) = 0.39.

This system consists of two independent two-dimensional systems. There is exactly one
critical point. The standard linearization analysis provides the characteristic numbers
λ1,2 = 0.2469± 4.9875i; λ3,4 = 3.4667± 4.9215i. The type of critical point is an unstable
focus-focus.
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Figure 59: The projection of
4D trajectories to 3D subspace
(x1(t), x2(t), x4(t)).

Figure 60: The projection of
4D trajectories to 3D subspace
(x1(t), x3(t), x4(t)).
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Figure 61: The graphs of periodic solu-
tions (x1(t), x2(t)) of the system (41) with
the regulatory matrix (55), k1 = 0.5 and
k2 = 1.815.
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Figure 62: The graphs of periodic solu-
tions (x3(t), x4(t)) of the system (41) with
the regulatory matrix (55), k1 = 0.5 and
k2 = 1.815.

Let us change two elements at the right upper (w14) and left lower (w41) corners. Let
w41 = 0.1 and (w14) values are considered in Table 5.

Table 5. Results of calculations for the system (41) with regulatory matrix (55)
k1 = 0.5 and k2 = 1.815, changing the parameter w14.

w14 λ1,2 λ3,4 Lyapunov exponents

-1.2 0.189± 4.49i 3.374± 4.912i (0; -0.48; -0.89; -0.96)
-1.1 0.206± 4.586i 3.379± 4.908i (0; -0.70; -0.70; -0.87)
-1 0.220± 4.671i 3.384± 4.905i (0.05; 0; -0.88; -0.98)

-0.9 0.232± 4.745i 3.389± 4.902i (0; -0.27; -0.29; -0.89)
-0.8 0.242± 4.808i 3.394± 4.899i (0; -0.05; -0.58; -0.88)
-0.7 0.250± 4.862i 3.399± 4.897i (0.03; 0; -0.26; -0.89)
-0.6 0.256± 4.906i 3.405± 4.896i (0; -0.20; -0.20; -0.89)
-0.5 0.260± 4.941i 3.410± 4.894i (0; -0.09; -0.35; -0.89)
-0.4 0.261± 4.968i 3.415± 4.893i (0; -0.13; -0.33; -0.89)
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Calculations showed the following:

• if −1.2 ≤ w14 < −1, then the system (41) with the regulatory matrix (55) has a
periodic solution;

• if w14 = −1, then the system (41) with the regulatory matrix (55) is chaotic;

• if −0.9 ≤ w14 < −0.7, then the system (41) with the regulatory matrix (55) has a
periodic solution;

• if w14 = −0.7, then the system (41) with the regulatory matrix (55) is chaotic;

• if −0.6 ≤ w14 ≤ −0.4, then the system (41) with the regulatory matrix (55) has a
periodic solution.
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{x1 x2}

Figure 63: The graphs of solutions
(x1(t), x2(t)) of the system (41) with the
regulatory matrix (55), k1 = 0.5 and k2 =
1.815, w14 = −1.
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Figure 64: The graphs of solutions
(x3(t), x4(t)) of the system (41) with the
regulatory matrix (55), k1 = 0.5 and k2 =
1.815, w14 = −1.
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Figure 65: The graphs of solutions
(x1(t), x2(t)) of the system (41) with the reg-
ulatory matrix (55), k1 = 0.5 and k2 = 1.815,
w14 = −0.7.
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Figure 66: The graphs of solutions
(x3(t), x4(t)) of the system (41) with the
regulatory matrix (55), k1 = 0.5 and
k2 = 1.815, w14 = −0.7.
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Figure 67: The projection of
4D trajectories to 2D subspace
(x1(t), x2(t)), w14 = −0.7.

Figure 68: The projection of
4D trajectories to 3D subspace
(x1(t), x2(t), x4(t)), w14 = −0.7.

The dynamics of Lyapunov exponents are shown in Figure 69 and Figure 70.
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Figure 69: The dynamics of Lyapunov ex-
ponents of the system (41) with the regula-
tory matrix (55), k1 = 0.5 and k2 = 1.815,
w14 = −1.
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Figure 70: The dynamics of Lyapunov ex-
ponents of the system (41) with the regula-
tory matrix (55), k1 = 0.5 and k2 = 1.815,
w14 = −0.7.

6.7 4D system from 3D and 1D systems

Let us return to the GRN system (41).

Consider

W =




1 0 2 0
1 1 0 0
−2 0 1 0
0 0 0 k


 (56)

and µ1 = µ3 = µ4 = 5, µ2 = 15, v1 = v2 = v3 = v4 = 1, θ1 = 1.2, θ2 = 0.5, θ3 = −0.6,
θ4 = −0.2. The system is uncoupled, consisting of one independent 3D system and one
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1D system. The 3D system has one critical point. The periodic solution is depicted in
Figure 37.

Table 6. Results of calculations for the system (41) with regulatory matrix (56),
changing the parameter k.

k x∗ y∗ z∗ m∗ λ1 λ2 λ3,4

-4 0.537 0.999 0.346 0.141 -3.42 -0.99 0.188± 2.372
-3 0.537 0.999 0.346 0.172 -3.13 -0.99 0.188± 2.372
-2 0.537 0.999 0.346 0.224 -2.74 -0.99 0.188± 2.372
-1 0.537 0.999 0.346 0.336 -2.12 -0.99 0.188± 2.372

-0.1 0.537 0.999 0.346 0.661 -1.11 -0.99 0.188± 2.372
0.1 0.537 0.999 0.346 0.802 -0.99 -0.92 0.188± 2.372
1 0.537 0.999 0.346 0.998 -0.99 -0.988 0.188± 2.372
2 0.537 0.999 0.346 0.999 -0.99 -0.99 0.188± 2.372
4 0.537 0.999 0.346 0.999 -0.999 -0.999 0.188± 2.372

There is one periodic solution.

Figure 71: The projection of 4D trajecto-
ries to 3D subspace (x1, x3, x4), k = −4
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Figure 72: The graphs of periodic solutions
(x1(t), x2(t), x3(t), x4(t)) of the system (41)
with the regulatory matrix (56), k = −4.

Figure 73: The projection of 4D trajecto-
ries to 3D subspace (x1, x3, x4), k = 4.
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Figure 74: The graphs of periodic solutions
(x1(t), x2(t), x3(t), x4(t)) of the system (41)
with the regulatory matrix (56), k = 4.
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6.8 Examples

In below examples the 4D GRN system (41) is considered.

Example 1. Now fill in all zero elements of the regulatory matrix (55) with values 0.1,
so the regulatory matrix is

W =




0.5 2 0.1 0.1
−2 0.5 0.1 0.1
0.1 0.1 1.815 2
0.1 0.1 −2 1.815


 . (57)

The parameters and the initial conditions are the same. There is exactly one critical
point. The standard linearization analysis provides the characteristic numbers λ1,2 =
0.2159± 4.939i and λ3,4 = 3.375± 4.789i.
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Figure 75: The projection of 4D trajectories
to 2D subspace (x1, x2).
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Figure 76: The projection of 4D trajecto-
ries to 3D subspace (x1, x2, x4).
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Figure 77: The graphs of solutions
(x1(t), x2(t)) of the system (41) with the
regulatory matrix (57).
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Figure 78: The graphs of solutions
(x1(t), x2(t), x3(t), x4(t)) of the system
(41) with the regulatory matrix (57).

Solutions are visually chaotic, in fact, they are not chaotic.
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The dynamics of Lyapunov exponents are shown in Figure 79.
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Figure 79: LE1 = 0, LE2 = −0.007, LE3 = −0.32, LE4 = −0.90

Example 2. The regulatory matrix is

W =




0.9 1.9 0.3 1
−2 1 −0.1 0.1
0.1 0.1 1 2
0.3 0.3 −1.8 0.8


 (58)

and the parameters v1 = v2 = v3 = v4 = 1, µ1 = µ2 = µ3 = µ4 = 9, θ1 = 1.2, θ2 = −0.6,
θ3 = 1.2, θ4 = −0.6.

The initial conditions are

x1(0) = 0.46; x2(0) = 0.16; x3(0) = 0.62; x4(0) = 0.29.

The critical point is (0.8863; 0.0771; 0.6778; 0.2421). The standard linearization analy-
sis provides the characteristic numbers λ1 = −0.998266, λ2 = 0.0007695 and λ3,4 =
0.704708± 3.33305i. The type of the critical point is an unstable saddle-focus.

The critical point is (0.9088; 0.6949; 0.6785; 0.2362). The standard linearization anal-
ysis provides the characteristic numbers λ1 = −0.998927, λ2 = −0.000699007 and
λ3,4 = 0.721755± 3.35263i. The type of the critical point is an unstable node-focus.

The critical point is (0.4552; 0.1567; 0.6190; 0.2869). The standard linearization analysis
provides the characteristic numbers λ1,2 = 0.103594±3.13907i and λ3,4 = 1.2932±3.64712i
The type of the critical point is an unstable focus-focus. The projection of this attractor
on two-dimensional subspace (x1, x2) is in the figure below.
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Figure 80: The projection of 4D trajectories to
2D subspace (x1, x2).
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Figure 81: The graphs of periodic so-
lutions (x1(t), x2(t), x3(t), x4(t)) of the
system (41) with the regulatory matrix
(58).

Example 3. The regulatory matrix is

W =




0.8 2 −0.8 0.5
−2 0.3 0.4 −0.7
−0.5 0.2 1.8 2
0.8 −0.7 −2 1.8


 (59)

and the parameters v1 = v2 = v3 = v4 = 1, µ1 = µ2 = µ3 = µ4 = 10 and θi, where
i = 1, 2, 3, 4 are calculated as





θ1 =
w11 + w12 + w13 + w14

2
,

θ2 =
w21 + w22 + w23 + w24

2
,

θ3 =
w31 + w32 + w33 + w34

2
,

θ4 =
w41 + w42 + w43 + w44

2
.

θ1 = 1.25, θ2 = −1, θ3 = 1.75, θ4 = −0.05.

The initial conditions are

x1(0) = 0.4; x2(0) = 0.6; x3(0) = 0.39; x4(0) = 0.38. (60)

The critical point is (0.5; 0.5; 0.5; 0.5). The standard linearization analysis provides the
characteristic numbers λ1,2 = −0.44 ± 4.603i and λ3,4 = 4.33 ± 5.135i. The type of the
critical point is an unstable focus-focus.
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Figure 82: The graphs of solutions
(x1(t), x2(t), x3(t), x4(t)) of the system (41)
with the regulatory matrix (59).

Figure 83: The projection of 4D tra-
jectories to 3D subspace (x1, x2, x3).

The dynamics of Lyapunov exponents are shown in Figure 84.
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Figure 84: LE1 = 0.20, LE2 = 0, LE3 = −0.75, LE4 = −0.92

LE1, LE2, LE3, LE4 = (+, 0,−,−) is a self-excited chaotic attractor. The behavior of the
system (41) with regulatory matrix (59) and initial conditions (60) is chaotic.

6.9 Conclusions for four-dimensional systems

The following are true for the system (41):

• the four-dimensional system (41) can have attractors of various kinds;

• the four-dimensional system (41) can have several stable periodic solutions, which
serve as attractors;

• the irregular behavior of solutions near the chaotic attractor is possible. It can
appear in a very small range of parameters;

• the self-excited chaotic attractor is possible.
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7 Five-dimensional (5D) systems

The system of ODE consisting of five equations is





dx1

dt
= f1(w11x1 + . . . + w15x5)− v1x1,

dx2

dt
= f2(w21x1 + . . . + w25x5)− v2x2,

. . . . . . . . .

dx5

dt
= f5(w51x1 + . . . w55x5)− v5x5.

(61)

All processes occurring in the body (biochemical and physiological) are carried out due
to the coordinated expression of various groups of genes. Each such group forms the
basis of a specific gene network responsible for the performance of a specific function of a
cell, organ, or organism. Beneath the gene network, this refers to the set of coordinately
expressed genes, their protein products, and the relationships between them. The higher
the dimension of the system, the more realistic the mathematical model is.

7.1 Artificial Neural Networks

Consider the system 



x′1 = tanh(x4 − x2)− bx1,
x′2 = tanh(x1 + x4)− bx2,
x′3 = tanh(x1 + x2 − x4)− bx3,
x′4 = tanh(x3 − x2)− bx4,
x′5 = tanh(x1 + x4 − x5)− bx5

(62)

and b = 0.043.

The initial conditions are

x1(0) = 1.2; x2(0) = 0.4; x3(0) = 1.2; x4(0) = −1; x5(0) = −1.

The graph of the system (62) is depicted in Figure 85.
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Figure 85: The graph, corresponding to the system (62).

This system has an attractor as shown in Figure 86 and Figure 87. The irregular
behavior of three solutions can be seen in Figure 88 and Figure 89.
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Figure 86: The projection of the attractor on
2D subspace (x4(t), x5(t))

Figure 87: The projection of the attrac-
tor on 3D subspace (x1(t), x4(t), x5(t))
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Figure 88: The graphs of solutions
(x1(t), x2(t)) of the system (62).
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Figure 89: The graphs of solutions
(x1(t), x2(t), x3(t), x4(t), x5(t)) of the sys-
tem (62).
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7.2 5D system from 2D and 3D systems

Example 1. Consider the five-dimensional system (61). Let the regulatory matrix be

W =




1 1 1 0 0
0 1 1 0 0
1 0 1 0 0
0 0 0 0 1
0 0 0 1 0




(63)

and µ1 = µ2 = µ3 = µ4 = µ5 = 5, v1 = v2 = v3 = v4 = v5 = 1, θ1 = 1.5, θ2 = θ3 = 1 and
θ4 = θ5 = 0.5.

The initial conditions are

x1(0) = 0.4; x2(0) = 0.395; x3(0) = 0.4; x4(0) = 0.395; x5(0) = 0.1.

This system consists of one three-dimensional system and one two-dimensional system.

Figure 90: The graph, corresponding to the case of
the regulatory matrix (63).

This system is uncoupled and has one critical point (0.5, 0.5, 0.5, 0.5, 0.5). The solution
of the system (61) with the regulatory matrix (63) is stable.

Example 2. Consider the five-dimensional system (61). Let the regulatory matrix be

W =




1 0 2 0 0
0 1 0 0 0
−2 0 1 0 0
0 0 0 0.5 2
0 0 0 −2 0.5




(64)

and µ1 = µ3 = 5, µ2 = 15, µ4 = µ5 = 10, v1 = v2 = v3 = v4 = v5 = 1, θ1 = 1.2, θ2 =
0.5, θ3 = −0.6, θ4 = 1.2, θ5 = −0.7.

The initial conditions are

x1(0) = 0.5; x2(0) = 0; x3(0) = 0.3; x4(0) = 0.5; x5(0) = 0.3.

This system consists of one three-dimensional system, which has a periodic solution de-
picted in Figure 34, and one two-dimensional system, which has a periodic solution de-
picted in Figure 7. This system is uncoupled and has three critical points. The solution
of the system (61) with regulatory matrix (64) is periodic.
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Figure 91: The graphs of solutions xi(t), i =
1, 3 of the system (61) with the regulatory
matrix (64).
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Figure 92: The projection of 5D trajec-
tories to 2D subspace (x1, x3).

Figure 93: The projection of 5D trajectories
to 3D subspace (x1, x2, x3).

Figure 94: The projection of 5D trajectories
to 3D subspace (x1, x3, x4).

Example 3. Consider the five-dimensional system (61). Let the regulatory matrix
be (64). All zero elements we change to 0.1. Other parameters remain the same.

The initial conditions are

x1(0) = 0.392; x2(0) = 0; x3(0) = 0.397; x4(0) = 0.35; x5(0) = 0.3.

This system is coupled. The solution of this system is still periodic.
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Figure 95: The graphs of solutions xi(t), i =
1, 2, 3, 4, 5 of the system (61) with the regulatory
matrix (64), all zero elements equal 0.1.

Figure 96: The projection of 5D tra-
jectories to 3D subspace (x1, x2, x3)

7.3 Conclusions for five-dimensional systems

The following are true for the system (61):

• the five-dimensional system (61) can have attractors of various kinds;

• the five-dimensional system (61) can have several stable periodic solutions, which
serve as attractors;

• the irregular behavior of solutions near the attractor in Artificial Neural Networks
is possible.

8 Six-dimensional (6D) systems

The system of ODE consisting of six equations is





dx1

dt
= f1(w11x1 + . . . + w16x6)− v1x1,

dx2

dt
= f2(w21x1 + . . . + w26x6)− v2x2,

. . . . . . . . .

dx6

dt
= f6(w61x1 + . . . w66x6)− v6x6.

(65)

Similar systems of dimensionality two, three, four and of arbitrary dimensionality [58],[63]
appear in various contexts describing neuronal networks [14],[13], genetic networks [89],
telecommunications networks [29] and more. This type models can reflect an evolution in
time t of a network. Networks management and control are possible by changing system
parameters [70], [4].
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8.1 Artificial Neural Networks

Consider the system





x′1 = tanh(x4 − x2)− bx1,
x′2 = tanh(x1 + x4)− bx2,
x′3 = tanh(x1 + x2 − x4)− bx3,
x′4 = tanh(x3 − x2)− bx4,
x′5 = tanh(x1 + x4 − x5 + x6)− bx5,
x′6 = tanh(x1 + x4)− bx6

(66)

and b = 0.043.

The initial conditions are

x1(0) = 1.2; x2(0) = 0.4; x3(0) = 1.2; x4(0) = −1; x5(0) = −1; x6(0) = −1.

The graph of the system (66) is depicted in Figure 97.

Figure 97: The graph, corresponding to the case of
the regulatory matrix (66).

This system has an attractor as shown in Figure 98 and Figure 99. The irregular behavior
of solutions can be seen in Figure 100 and Figure 101.
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Figure 98: The projection of the attractor on
2D subspace (x1(t), x6(t))

Figure 99: The projection of the attrac-
tor on 3D subspace (x1(t), x4(t), x6(t))
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Figure 100: The graphs of solutions
(x1(t), x6(t)) of the system (66).

100 200 300 400
t

-5

5

{x1, x2, x3, x4, x5, x6}

Figure 101: The graphs of solutions
(x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)) of the
system (66).

This system can exhibit three types of dynamics. Solutions can approach a static equi-
librium and thereafter remain forever. It means that the human brain is dead. Solutions
can be periodic or quasi-periodic. In this case, the human brain does not develop, which
means it does not have the ability to think creatively. Solutions can be chaotic, which
is arguably the most healthy state for a natural network, especially if it is only weakly
chaotic so that it retains some memory but can explore a vastly greater state space.
Weakly chaotic networks exhibit the complex behaviour that we normally associate with
intelligent living systems [82].

8.2 6D system from 2D systems

Example 1. Consider the six-dimensional system (65). Let the regulatory matrix be

W =




0.5 2 0 0 0 0
−2 0.5 0 0 0 0
0 0 0.5 2 0 0
0 0 −2 0.5 0 0
0 0 0 0 0.5 2
0 0 0 0 −2 0.5




(67)

and µ1 = µ2 = µ3 = µ4 = µ5 = µ6 = 10, v1 = v2 = v3 = v4 = v5 = v6 = 1,
θ1 = θ3 = θ5 = 1.2 and θ2 = θ4 = θ6 = −0.7.
This system consists of three independent two-dimensional systems, which have an attrac-
tor depicted in Figure 7. The resulting attractor is a product of three two-dimensional
ones and is, therefore, periodic. A trial solution with the initial values

x1(0) = 0.68, x2(0) = 0.3, x3(0) = 0.1, x4(0) = 0.6, x5(0) = 0.2, x6(0) = 0.1 (68)

was used to reveal the six-dimensional attractor.

Change now two elements at the right upper (w16) and left lower (w61) corners. Let
w16 = w61 = 0.5. The six-dimensional system (65) is not yet uncoupled. The trial solution
still tends to periodic attractor (a different one), however. The graphs of all six solutions
xi(t) are depicted in Figure 102 and Figure 103.
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Figure 102: The graphs of xi(t), i = 1, 2, 3,
of the system (65) with the regulatory ma-
trix (67), w16 = w61 = 0.5.
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Figure 103: The graphs of xi(t), i = 4, 5, 6,
of the system (65) with the regulatory ma-
trix (67), w16 = w61 = 0.5.

8.3 6D system from 3D systems

Consider the six-dimensional system (65). Our intent now is to create a six-dimensional
attractor from three-dimensional ones.

Example 1. Consider the six-dimensional system (65) with the regulatory matrix

W =




k1 0 −1 0 0 0
−1 k1 0 0 0 0
0 −1 k1 0 0 0
0 0 0 k2 0 −1
0 0 0 −1 k2 0
0 0 0 0 −1 k2




, (69)

where k1 = k2 = 1, µi = 5, θi = k−1
2

.

Figure 104: The graph, corresponding to the case of
the regulatory matrix (69).

The initial conditions are

x1(0) = 0.046; x2(0) = 0.8; x3(0) = 0.3; x4(0) = 0.7; x5(0) = 0.8; x6(0) = 0.2.

The 6D system has an attractor in the form of a periodic solution generated by a three-
dimensional periodic solution shown in Figure 30 and Figure 32. The projections of this
periodic attractor onto three-dimensional subspaces are shown in Figure 105 and Figure
106.
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Figure 105: The projections of 6D tra-
jectories to 3D subspace (x1, x2, x3).

Figure 106: The projections of 6D tra-
jectories to 3D subspace (x1, x3, x5).

Consider the six-dimensional system (65) with the regulatory matrix (69), where k1 =
1, k2 = 0.5, µi = 5, θi = k−1

2
.

The initial conditions are

x1(0) = 0; x2(0) = 0.4; x3(0) = 0.1; x4(0) = 0.2; x5(0) = 0.1; x6(0) = 0.1.

The projections of this periodic attractor onto three-dimensional subspaces are shown in
Figure 107 and Figure 108.

Figure 107: The projections of 6D tra-
jectories to 3D subspace (x1, x3, x5).

Figure 108: The projections of 6D tra-
jectories to 3D subspace (x2, x4, x6).

The respective six-dimensional system was studied in [68].

Example 2. We take the three-dimensional system (19) with the regulatory matrix (39),
set of parameters (38) and initial conditions (40). The irregular behavior of three solutions
can be seen in Figure 45.
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Consider the six-dimensional system (65) with the regulatory matrix

W =




0 1 −5.64 0 0 0
1 0 0.1 0 0 0
1 0.02 0 0 0 0
0 0 0 0 1 −5.64
0 0 0 1 0 0.1

0.5 0 0 1 0.02 0




(70)

and

µ1 = µ2 = µ4 = µ5 = 7, µ3 = µ6 = 13, v1 = v4 = 0.65, v2 = v5 = 0.42, v3 = v6 = 0.1,

θ1 = θ4 = 0.5, θ3 = θ5 = 0.3, θ3 = θ6 = 0.7.

The initial conditions are

x1(1) = 0.68; x2(1) = 0.45; x3(1) = 0.15; x4(1) = 0.68; x5(1) = 0.45; x6(1) = 0.15.

It would be uncoupled if the element w61 be zero. Then we would have a six-
dimensional attractor which is the product of two identical three-dimensional attractors
as in Figure 44. But w61 is set to 0.5. The six-dimensional system is coupled now. The
new attractor exists and some of the three-dimensional projections are depicted in Figure
109 and Figure 110.

Figure 109: The projections of 6D tra-
jectories to 3D subspace (x4, x5, x6).

Figure 110: The projections of 6D tra-
jectories to 3D subspace (x1, x4, x6).
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Figure 111: The projections of 6D trajec-
tories to 3D subspace (x1, x3, x6). Figure 112: The projections of 6D tra-

jectories to 3D subspace (x1, x3, x6).

The solutions for system (65) with the matrix (70) are depicted in Figure 113 and
Figure 114.

100 200 300 400 500
t

-0.5

0.5

1.0

1.5

{x1, x2, x3}

Figure 113: The graphs of solutions xi(t),
i = 1, 2, 3, of the system (65) with the reg-
ulatory matrix (70), w61 = 0.5.
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Figure 114: The graphs of solutions xi(t),
i = 4, 5, 6, of the system (65) with the reg-
ulatory matrix (70), w61 = 0.5.

The graphs of solutions have irregular forms. They are different in Figure 113 and
Figure 114 because of the non-zero element w61.

8.4 Conclusions for six-dimensional systems

The following are true for the system (65):

• the six-dimensional system (41) can have attractors of various kinds;

• the six-dimensional system (41) can have several stable periodic solutions, which
serve as attractors;

• the irregular behavior of solutions near the attractor is possible.
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9 Sixty-dimensional (60D) systems

The network taken for the study is a realistic biological network, “T cells in large granular
lymphocyte leukemia associated with blood cancer”. A network model considered in
[10],[89], contains 60 nodes and 195 regulatory edges. It was found in [89] that this
network has three attractors, of which two correspond to two distinct cancerous states
(denoted as C1 and C1) and one is associated with the normal state (denoted as N).
The proper selection of the respective forty-eight parameters can drive the system to the
normal state. The existence of needed parameter perturbation was acknowledged. The
attractor network was considered and the main proposition was to arrange experimental
adjustment of parameters in order to achieve the required goal.

Figure 115: The graph of matrix 60× 60.

To obtain this graph, the “Graphia” program was used. The matrix (116) was written in
the program “Microsoft Excel”.
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9.1 Subsystems

9.1.1 Three-dimensional systems

Example 1. Consider µ1 = 5, µ2 = 15, µ3 = 5, v1 = v2 = v3 = 1 and θ1 = 1.2, θ2 =
0.5, θ3 = −0.6. The regulatory matrix of the system (19) is

W =




w2a3 w2a4 w2a5

w3a3 w3a4 w3a5

w4a3 w4a4 w4a5


 , (71)

where w2a3 = −1, w2a4 = w2a5 = 0, w3a3 = w3a5 = 0, w3a4 = 1, w4a3 = w4a4 = 0, w4a5 =
1. The nullclines are depicted in Figure 117. There are exactly three critical points.

Figure 117: Visualization of nullclines (x1 - red, x2 - green,
x3 - blue) of the system(19) with the regulatory matrix (71).

The characteristic equation for critical point (0.0024; 0.0006; 0.9997) is

−λ3 + Aλ2 + Bλ + C = 0, (72)

where A = −3.00215, B = −3.00419 and C = −1.00204.

Solving the equation we have λ1 = −1.01218, λ2 = −0.998321 and λ3 = −0.991643. The
type of the critical point is a stable node.

The characteristic equation for critical point (0.0024; 0.5; 0.9997) is (72), where A =
0.739495, B = 4.5184 and C = 2.77883.

Solving the equation we have λ1 = −1.01218, λ2 = −0.998321 and λ3 = 2.75. The type
of the critical point is a saddle.

The characteristic equation for critical point (0.0024; 0.9994; 0.9997) is (72), where
A = −3.00215, B = −3.00419 and C = −1.00204.

Solving the equation we have λ1 = −1.01218, λ2 = −0.998321 and λ3 = −0.991643. The
type of the critical point is a stable node.
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Figure 118: Visualization of two stable nodes and the sad-
dle of the system(19) with the regulatory matrix (71).

Example 2. Consider µ1 = 5, µ2 = 15, µ3 = 5, v1 = v2 = v3 = 1 and θ1 = 1.2, θ2 =
0.5, θ3 = −0.6. The regulatory matrix of the system (19) is

W =




w6a7 w6a8 w6a9

w7a7 w7a8 w7a9

w8a7 w8a8 w8a9


 , (73)

where w6a7 = w7a8 = w8a9 = 1, w6a8 = w6a9 = w7a7 = w7a9 = w8a7 = w8a8 = 0. The
nullclines are depicted in Figure 119. There are exactly three critical points.

Figure 119: Visualization of nullclines (x1 - red, x2 - green,
x3 - blue) of the system(19) with the regulatory matrix (73).

The characteristic equation for critical point (0.0025; 0.00056; 0.9997) is (72), where
A = −2.97748, B = −2.95509 and C = −0.977616.

Solving the equation we have λ1 = −0.998321, λ2 = −0.991643 and λ3 = −0.987513. The
type of the critical point is a stable node.

The characteristic equation for critical point (0.0025; 0.5; 0.9997) is (72), where A =
0.764166, B = 4.47519 and C = 2.7111.
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Solving the equation we have λ1 = −0.998321, λ2 = −0.987513 and λ3 = 2.75. The type
of the critical point is a saddle.

The characteristic equation for critical point (0.0025; 0.9994; 0.9997) is (72), where
A = −2.97748, B = −2.95509 and C = −0.977616.

Solving the equation we have λ1 = −0.998321, λ2 = −0.991643 and λ3 = −0.987513. The
type of the critical point is a stable node.

Example 3. Consider µ1 = 5, µ2 = 15, µ3 = 5, v1 = v2 = v3 = 1 and θ1 = 1.2, θ2 =
0.5, θ3 = −0.6. The regulatory matrix of the system (19) is

W =




w14a15 w14a16 w14a17

w15a15 w15a16 w15a17

w16a15 w16a16 w16a17


 , (74)

where w14a15 = w14a16 = 1, w14a17 = 0, w15a15 = 1, w15a16 = w15a17 = w16a15 = w16a16 =
0, w16a17 = 1. The nullclines are depicted in Figure 120. There are exactly three critical
points.

Figure 120: Visualization of nullclines (x1 - red, x2 - green,
x3 - blue) of the system(19) with the regulatory matrix (74).

The characteristic equation for critical point (0.0025; 0.0006; 0.9997) is (72), where
A = −2.9858, B = −2.97151 and C = −0.985711.

Solving the equation we have λ1 = −1.00586, λ2 = −0.998321 and λ3 = −0.981615. The
type of the critical point is a stable node.

The characteristic equation for critical point (0.5532; 0.6895; 0.9997) is (72), where
A = −1.76247, B = 3.44158 and C = 4.19738.

Solving the equation we have λ1 = −2.46784, λ2 = −0.998321 and λ3 = 1.70369. The
type of the critical point is a saddle.

The characteristic equation for critical point (0.9801; 0.9993; 0.9997) is (72), where
A = −2.3731, B = 0.260488 and C = 1.63021.
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Solving the equation we have λ1 = −2.13841, λ2 = −0.998321 and λ3 = 0.763632. The
type of the critical point is a saddle.

Example 4. Consider µ1 = 5, µ2 = 15, µ3 = 5, v1 = v2 = v3 = 1 and θ1 = 1.2, θ2 =
0.5, θ3 = −0.6. The regulatory matrix of the system (19) is

W =




w17a22 w17a23 w17a24

w18a22 w18a23 w18a24

w19a22 w19a23 w19a24


 , (75)

where w17a22 = w17a23 = 0, w17a24 = w18a22 = 1, w18a23 = w18a24 = w19a22 = w19a24 =
0, w19a23 = 1. The nullclines are depicted in Figure 121. There is one critical point.

Figure 121: Visualization of nullclines (x1 - red, x2 - green,
x3 - blue) of the system(19) with the regulatory matrix (75).

The characteristic equation for critical point (0.2281; 0.0167; 0.9562) is (72), where
A = −3, B = −3 and C = −0.954711.

Solving the equation we have λ1,2 = −1.17822±0.308693i and λ3 = −0.643552. The type
of critical point is a stable focus-node.

Example 5. Consider µ1 = 5, µ2 = 15, µ3 = 5, v1 = v2 = v3 = 1 and θ1 = 1.2, θ2 =
0.5, θ3 = −0.6. The regulatory matrix of the system (19) is

W =




w37a35 w37a36 w37a37

w38a35 w38a36 w38a37

w39a35 w39a36 w39a37


 , (76)

where w37a35 = w37a37 = 0, w37a36 = 1, w38a35 = w38a36 = 0, w38a37 = −1, w39a35 =
1, w39a36 = w39a37 = 0. The nullclines are depicted in Figure 122. There is one critical
point.

The characteristic equation for critical point (0.0025; 0; 0.9531) is (72), where A = −3,
B = −3 and C = −1.
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Figure 122: Visualization of nullclines (x1 - red, x2 - green,
x3 - blue) of the system(19) with the regulatory matrix (76).

Solving the equation we have λ1,2 = −0.999879± 0.000209324i and λ3 = −1.00024. The
type of the critical point is a stable focus-node.

Example 6. Consider µ1 = 5, µ2 = 15, µ3 = 5, v1 = v2 = v3 = 1 and θ1 = 1.2, θ2 =
0.5, θ3 = −0.6. The regulatory matrix of the system (19) is

W =




w37a37 w37a38 w37a39

w38a37 w38a38 w38a39

w39a37 w39a38 w39a39


 , (77)

where w37a37 = w37a39 = 0, w37a38 = 1, w38a37 = −1, w38a38 = w38a39 = w39a37 =
w39a38 = 0, w39a39 = 1. The nullclines are depicted in Figure 123. There is one critical
point.

Figure 123: Visualization of nullclines (x1 - red, x2 - green,
x3 - blue) of the system(19) with the regulatory matrix (77).

The characteristic equation for critical point (0.0025; 0.0005; 0.9997) is (72), where
A = −2.99832, B = −2.99674 and C = −0.99842.

Solving the equation we have λ1,2 = −1± 0.00993657i and λ3 = −0.998321. The type of
the critical point is a stable focus-node.
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9.1.2 Four-dimensional systems

Example 1. The regulatory matrix is

W =




w6a7 w6a8 w6a9 w6a10

w7a7 w7a8 w7a9 w7a10

w8a7 w8a8 w8a9 w8a10

w9a7 w9a8 w9a9 w9a10


 ,

where w6a7 = w7a8 = w8a9 = w9a7 = w9a10 = 1, w6a8 = w6a9 = w6a10 = w7a7 =
w7a9 = w7a10 = w8a7 = w8a8 = w8a10 = w9a8 = w9a9 = 0 and v1 = v2 = v3 = v4 = 1,
µ1 = 5, µ2 = 15, µ3 = 5, µ4 = 5, θ1 = 1.2, θ2 = 0.5, θ3 = −0.6, θ4 = −0.2.

The first critical point is (0.0025; 0.00056; 0.9997; 0.9975). The standard lineariza-
tion analysis provides the characteristic numbers λ1 = −0.998321, λ2 = −0.991643,
λ3 = −0.987669 and λ4 = −0.987513. The type of the critical point is a 4D stable node.

The second critical point is (0.00250369; 0.5; 0.999664; 0.997528). The standard lineariza-
tion analysis provides the characteristic numbers λ1 = −0.998321, λ2 = −0.987669,
λ3 = −0.987513 and λ4 = 2.75. The type of the critical point is a saddle.

The third critical point is (0.00250369; 0.999443; 0.999664; 0.997528). The standard lin-
earization analysis provides the characteristic numbers λ1 = −0.998321, λ2 = −0.991643,
λ3 = −0.987669 and λ4 = −0.987513. The type of the critical point is a 4D stable node.

Example 2. The regulatory matrix is

W =




w37a37 w37a38 w37a39 w37a40

w38a37 w38a38 w38a39 w38a40

w39a37 w39a38 w39a39 w39a40

w40a37 w40a38 w40a39 w40a40


 ,

where w37a37 = w37a39 = w38a38 = w38a39 = w38a40 = w39a37 = w39a38 = w39a40 =
w39a40 = w40a40 = 0, w37a38 = w37a40 = w39a39 = 1w38a37 = w40a37 = w40a39 = −1 and
v1 = v2 = v3 = v4 = 1, µ1 = 5, µ2 = 15, µ3 = 5, µ4 = 5, θ1 = 1.2, θ2 = 0.5, θ3 = −0.6,
θ4 = −0.2.

The critical point is (0.0027; 0.0005; 0.9997; 0.01778). The standard linearization
analysis provides the characteristic numbers λ1 = −1, λ2,3 = −1 ± 0.03587i and
λ4 = −0.998321. The type of the critical point is a stable focus-node.

Example 3. The regulatory matrix is

W =




w37a35 w37a36 w37a37 w37a38

w38a35 w38a36 w38a37 w38a38

w39a35 w39a36 w39a37 w39a38

w40a35 w40a36 w40a37 w40a38


 ,

where w37a35 = w37a37 = w38a35 = w38a36 = w38a38 = w39a36 = w39a37 = w39a38 =
w40a36 = w40a38 = 0, w37a36 = w37a38 = w39a35 = w40a35 = 1, w38a37 = w40a37 = −1 and
v1 = v2 = v3 = v4 = 1, µ1 = 5, µ2 = 15, µ3 = 5, µ4 = 5, θ1 = 1.2, θ2 = 0.5, θ3 = −0.6,
θ4 = −0.2.
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The critical point is (0.0028; 0; 0.9532; 0.0229). The standard linearization analysis
provides the characteristic numbers λ1 = −1.07749, λ2,3 = −0.9613± 0.05437i and λ4 =
−1. The type of the critical point is a stable focus-node.

Example 4. The regulatory matrix is

W =




w41a51 w41a52 w41a53 w41a54

w42a51 w42a52 w42a53 w42a54

w43a51 w43a52 w43a53 w43a54

w44a51 w44a52 w44a53 w44a54


 ,

where w41a51 = w41a54 = w42a51 = w42a53 = w42a54 = w43a51 = w43a53 = w43a54 =
w44a52 = w44a53 = 0, w41a52 = w43a52 = w44a51 = w44a54 = 1, w41a53 = w42a52 = −1 and
v1 = v2 = v3 = v4 = 1, µ1 = 5, µ2 = 15, µ3 = 5, µ4 = 5, θ1 = 1.2, θ2 = 0.5, θ3 = −0.6,
θ4 = −0.2.

The critical point is (0.000021; 0.00055; 0.9527; 0.9975). The standard linearization
analysis provides the characteristic numbers λ1 = −1.00822, λ2 = −1, λ3 = −1 and
λ4 = −0.987514. The type of the critical point is a 4D stable node.

10 Conclusions

Main results of the Doctoral thesis are:

• Systems of orders two and three are considered with the regulatory matrices of
different structures. The number and the character of critical points are considered.

• For three-dimensional systems and four-dimensional systems chaotic attractors were
considered. Examples were constructed. In the thesis for Lyapunov exponents calcu-
lation the package “lce.m for Mathematica” was used. Another Wolfram Mathemat-
ica program “Lynch-DSAM.nb” was also used to check the correctness of Lyapunov
exponents calculation.

• Formulas for characteristic numbers of critical points for four-dimensional systems
were obtained. Examples of 4D systems with stable equilibria were constructed.

• Neuronal networks were considered and similarity with the corresponding ODE-type
models was detected.

• Examples of 5D were constructed. These systems possess periodic attractors. The
visualization of attractors of 5D by projecting them into lower dimension subspaces
and considering graphs of components of solutions was made.

• Examples of 6D systems were constructed. These systems possess periodic attractors
and exhibit irregular behavior of solutions. The visualization of attractors of 6D
systems by projecting them into lower dimension subspaces and considering graphs
of components of solutions was made.

• Sixty-dimensional system was considered. The graph of 60 × 60 matrix with the
program Graphia was constructed. Some subsystems of the 60D system were con-
sidered.
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The study of gene regulatory networks is important for human life and activity. Both
for the treatment of various diseases such as leukemia, multiple sclerosis, and Alzheimer’s,
and for describing problems and their solutions in economics, psychology, politics, and
many other areas. The more there is in a system of equations, the more similar it is to
the gene network that occurs in life. The main task is to continue the research and find
methods for studying systems with a large number of equations.
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