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1 General Information

Doctoral thesis contains 95 pages, 102 references, 123 figures, 6 tables.

Keywords and phrases: gene regulatory networks, mathematical modeling, phase por-
trait, periodic solutions, attractors, chaos.

Doctoral thesis

Object of research: a system of ordinary differential equations of the second and higher
orders, used in models of gene regulatory networks.

Aims of research: to obtain results on properties of a special system of ordinary dif-
ferential equations, making emphasis on attracting sets, their locations, dependence on
built-in parameters and types of interrelation between elements. Special attention is paid
to evolution of the system and prediction of its future behaviours.

Research tasks:

e overview of low-dimensional systems of ordinary differential equations (ODE), used
in models of genetic regulatory networks (GRN);

e collecting information on equilibria (critical points) of attracting nature in low-
dimensional systems;

e studying the nature of attractive equilibria in two-dimensional (2D) and three-
dimensional (3D) systems;

e derivation of formulas for calculating the characteristic numbers of critical points in
2D and 3D systems;

e finding attractors, other than equilibria, in three-dimensional (3D) systems;

e considering examples of 3D systems, which have attractors in the form of stable
periodic trajectories;

e considering examples of 3D systems, which exhibit chaotic behaviour of solutions;

e work with programs, detecting chaotic behavior on the basis of analysis of the
Lyapunov exponents;

e considering systems of order four (4D), formulas for characteristic numbers of critical
points;

e constructing examples of 4D systems, which have attractors in the form of stable
equilibria;

e constructing examples of 4D systems, which have attractors in the form of stable
periodic trajectories;



considering examples of 4D systems, which exhibit chaotic behaviour of solutions;

visualization of 4D attractors by projecting them on low-dimensional subspaces of
the 4D phase space;

considering examples of neuronal networks and detecting similarity in the corre-
sponding ODE-type models;

construction of examples of 5D and 6D systems which possess periodic attractors;
considering examples of 6D systems, which exhibit irregular behaviour of solutions;

visualization of attractors of 5D and 6D systems by projecting them into a lower
dimension subspaces and considering graphs of components of solutions;

overview of the results and outlining directions of future research.

Methods of research:

classical techniques of mathematical analysis;
comparison method;

phase plane and phase space method;

method of linearization around the trivial solution;

perturbation method.

Main results: the results of the work were published in 23 scientific papers ([4], [48],
[57]-[77]). Six of them ([4], [59], [67], [68], [69], [70]) have been published in the journals
indexed in SCOPUS, three of them ([57], [66], [65]) were submitted to publish in the
journals indexed in SCOPUS and two ([58], [71]) were submitted to publish in Web of
Science journals. The results were communicated at several conferences of different levels:
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Inna Samuilik, Nullcline method for research of GRN system critical points, The
78th Scientific Conference of the University of Latvia, (Riga, Latvia, February 28,
2020)
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of Biological Networks, VIII International Conference on Science and Technology,
(Belgorod, Russia, September 24-25, 2020).
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Scientific Conference of the University of Latvia, (Riga, Latvia, February 26, 2021).
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works, 2. International Baku Scientific Research Conference, (Baku, Azerbaijan,
April 28-30, 2021).
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2 Preface

The Theory of ordinary differential equations (ODE in short) has emerged from appli-
cations and serves applications. Closer to our times, new branches of the theory have
appeared. Among them, the theory of boundary value problems (BVP) for ODE took
significant place. Riga and its universities have strong traditions in this field. Pierce Bohl
is known for the creation of fixed point theorems for integral and differential equations. In
the middle of the 20th century, Anatoliy Myshkis had arrived in Riga to teach students,
among them were Yurii Klokov and Arnol’d Lepin. Y. Klokov and A. Lepin headed the
scientific division which studied BVP and related problems. This research is still con-
tinued now in the Institute of Mathematics and Computer Science of the University of
Latvia. Y. Klokov and A. Lepin had many doctorate students and descendants. Some
of them are still actively working in the field of differential equations, applications, and
mathematical modeling. Another direction in the theory of differential equations was es-
tablished by Professor Linard Reizins. This direction was aimed at the qualitative studies
of ordinary differential equations. The problems of structural stability, classification of
critical points for higher order equtions were in the center of his and his student’s studies.
It appears that Riga and Latvia had and still have long-standing traditions in the field of
the theory of ODE.

In 2015, when joining the group of Professor Alexander Shostak for the studies in the
field of telecommunication networks in the framework of a Europen project, the group of
mathematicians from Riga and Daugavpils was attracted by a new kind of problems, where
ordinary differential equations were involved. In the theory of telecommunication networks
very active group of Japanese mathematicians, among them, Yuki Koizumi, Masayuki
Murata, and others, proposed to use in the design of telecommunication networks the
principles of self-organization, that could be found in Nature. It was pointed out, that
in living organisms in any cell there exists a genetic regulatory network (GRN in short),
responsible, among others, for reactions to changes in the environment. It was emphasized,
that the mathematical model for GRN, which uses a system of ODE, can be used also
for the management and control of telecommunication networks. The so-called Virtual
Network Topology was proposed for the organization of a set of lightpaths, in order
to establish a mechanism for quick response and rearrangement of a telecommunication
network in bad conditions. A system of ODE, governing this process of rearrangement,
had attracted the attention of researchers in Institute of Mathematics and Computer
Science, University of Latvia and Daugavpils University. It appears, that accumulated
previous knowledge in the theory of ODE and experience in the studies of ODE, can be
applied to the new kind of problems. It was the starting point of research in this direction.

The system in the center of these studies is not easy, but it is in some sense symmet-
rical. It contains n ordinary differential equations of the form X' = F(WX —60) — VX,
where the vector X is for unknowns, F'is a vector of the so-called sigmoidal functions, W
is m X n matrix (it is called regulatory one), § and V' are the parameters. This system will
be denoted by S in this preface. It appeared first in the paper by Cowan-Vilson in the
study of neuronal networks of the human brain. It was used to model genetic networks,
and the meaning of X was different. It was associated with the protein expression of
any gene. By protein expression genes communicate with each other. Affecting a single
gene can affect the whole network. In system S the linear part describes the natural
decay of a network, where there is no interrelation between genes. Some authors intro-



duce in this model also other factors, such as stress. Generally speaking, the object of
investigation is a multi-parameter autonomous quasi-linear system of ordinary differential
equations. To the best of the author’s knowledge, this system was not studied sufficiently
for dimensions three and higher. One of the possible reasons is the lacking of theoretical
results for systems of this kind. In the last decade, a number of papers had appeared,
interpreting system S specifically. In the remarkable papers [10], [89] by Cornelius et al
and Le-Zhi Wang et al. the X vector was interpreted as the state vector for the genetic
network. This vector is time-dependent, X (¢), and it goes to its limiting set, or point.
It is to be mentioned, that the phase space for the system S has a time-invariant set Q
with the property: any trajectory of system S which enters Q, never escapes it. The
existence of attracting sets in Q follows. In the above interpretation, some diseases can
be treated having in mind that the respective state-vector X (¢) therefore is forced to go
to the “wrong” attractor. Since system S contains a lot of parameters, some of them are
adjustable and can be used to manage and control a network. Treatment of a disease
then means redirecting of “bad” trajectory to a “normal” attractor.

The above considerations were good motivations for the study of system S and its
attractor. The proposed promotional work contains achievements in this direction. Let
us list them.

1. The 2-dimensional systems were studied, using the nullclines method;

2. The 3-dimensional systems were studied, using the nullcline method and extensive
computational research; the main results are a) formulas for critical points of a 3D
system; b) multiple examples of periodic attractors;

3. The 4-dimensional systems were studied, using previously obtained results for 2-
dimensional systems; uncoupled 4D systems were constructed of two independent
2D-systems and various resulting combinations of attractors were studied; the main
results are a) formulas for critical points; b) periodic attractors for uncoupled 4D
systems; ¢) examples of periodic attractors; d) examples of perturbed 4D systems,
which are no longer uncoupled; some conclusions were made about attractors in
perturbed systems; d) an irregular behavior of solutions, tending to a 4D attractor,
was observed;

4. Some examples of the 5-dimensional systems were examined;

5. The 6-dimensional systems were studied; the main results are a) examples of 6D-
systems which were constructed of previously investigated three 2D systems; the
resulting system can have attractors of periodic nature; b) examples of 6D-systems
which were constructed of previously investigated two 3D systems; the resulting sys-
tem can have attractors of periodic nature; ¢) examples of perturbed, and therefore
coupled, 6D systems were examined; some observations on the behavior of solutions
were made;

6. The 60-dimensional system was considered from the works [10],[89].

Generally, the work contains mainly computationally obtained results concerning systems
of the form S, their phase space, examples of attractors and many related facts. The
collection obtained results lay the foundation for further research into gene network models
to understand them and develop methods of management and control.



3 Gene regulatory network

Gene regulatory networks (GRN in short) exist in any cell of any living organism. GRN
regulates reactions to changes in the environment, controls the development of a cell, and
manages the functioning of any kind. Elements of GRN, called genes, can influence other
genes by sending proteins [43]. As a result of such influence, other genes can be activated
or inhibited.

Attempts to mathematically model the functioning of GRN are multiple, using various
mathematical objects and tools [26],[87]. To describe the evolution of a network, the most
appropriate approach is using differential equations.

The typical system is of the form
X' =FWX —0)—0vX,

where X is the network state vector, F'is a sigmoid nonlinearity with argument, trans-
formed by multiplication with the regulatory matrix W, v.X is a natural decay in absence
of F.

Definition 3.1. A dynamical system is a system of equations describing the time evolution
of one or more dependent variables. Equations of motion can be modelled as differential
equations and difference equations [34].

Consider the n-dimensional dynamical system

( dl’l 1
- = — M
dt 1+ e—H1(wiiz1twizTe+...+win@n—01) 141
dl’g 1
— = — Vo
< dt 1 4+ e—m2(warz1+wozs+...Fwanzn—02) 20 (1)
dx,, 1
- — UnZnp,
\ dt ]_ _|_ e_lin(wnlxl+wn2x2+---+wnnxn_0n)

where 1, > 0, 0, and v, > 0 are parameters and the coefficients w;; are entries of the so
called regulatory matrix

w11 W2 ... Wip
W1 W2 ... W2

W = " (2)
Wp1 Wp2 ... Wpp

The parameters of the GRN have the following biological interpretations:
e v; - degradation of the i-th gene expression product;

e w;; - the connection weight or strength of control of gene j on gene i. Positive
values of w;; indicate activating influences while negative values define repressing
influences;

e 0; - influence of external input on gene 7, which modulates the gene’s sensitivity of
response to activating or repressing influences.



4 Two-dimensional (2D) systems

Consider the system

( dﬂ?l o 1
E 1 + e—mi(wnzi+wizre—01) — U171,
L : (3)
% 1 4 e~ H2(w2121+w2wr—02) — U232,

\

where p; and v; are positive.

System (3) contains ten parameters w;j, fu;, 6;, v;. Changing any of these parameters
can essentially affect the properties of the system and solutions. The construction of the
characteristic equation is a nontrivial task.

The argument z of a sigmoidal function is transformed by the regulatory (coefficient)
matrix
W:(wn wu)‘ (4)
W21 W2

This matrix describes interrelation of elements x; of a network. If GRN are studied, then
the structure of W affects properties of the system and their solutions.

The nullclines are given by the equations

_ 1 1
S U_l 1 + e # (wiiz1+wizze—01)’
(5)
_1 1
2= U_Q 1+eH2 (wa121—wa2x2—02) "
. 1 _ o .
The function f(z) = TT e is a sigmoid and it has the range of values (0,1).
e z

Therefore the first nullcline is in the strip {(z1,22) : 0 < 1 < %, x9 € R} and the second
one is in the strip {(x1,22) : 71 € R,0 < 25 < %} Therefore all critical points are located
in the rectangle @Q := {(z1,22) : 0 < 11 < %,0 < a9 < %}

Proposition 4.1. There ezists at least one critical point for the system (3).

4.1 Linearized system

For the analysis of critical points, we need the linearized system. It takes the form

/

U = —V1U1 + W11 91U + L1 Wi2g1 U2,
!

Uy = —VolUa + oW1 GoU1 + UoWaGoUo,
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where
e—H1 (wirzf+wioxs—01)

9 = [1 + e—m(w119€’{+W12$§—91)]2’

e 12 (w2127 +waoxs —02)

go = [1+ e—ro(wnef+wna;—62))2

and (z7, %) is a critical point under consideration.

A— H1W1191 — V1 H1W1201
H2W2192 H2Wa2g2 — U2
A\ = [Frng1 — 1 — A H1W1291
H2W21 92 HoaWaGa — V2 — A

and the characteristic equation is

det|A - )\f| = (M1w1191 — U1 — /\)(M2w22g2 — Uy — /\) - (,u2w2192)(,u1w12g1) =

[ oW1 W22G1G2 — H1W11G1V2 — [MW11G1IA — [UoW2gaU1 + V1V + U1 A — [laWaaga A+
VoA + A% — Ly powiowa1 9192 = A2 + (V1 + Vg — w191 — PoWazga) A+

1 f2W11Wo2g1g2 — H1W11g1V2 — H2W22gaV1 — f1foWi2W21g1g2 + V1v2 = 0.

To simplify we can write the characteristic equation as
N+ B+ C =0, (6)

where

B = v + vy — w191 — powangs,

C' = p1 oW1 Wa2g1g2 — P1W11G1V2 — HoWa2Gal1 — f1flaW12W21g1G2 + V1V2.
4.2 Critical points

For a simple continuous-time model, depending on the parameters, the attractor can be a
single point (a critical point), two points (a two-point cycle), four, eight, or a larger finite
number of points (a more complex cycle), a closed curve, or a chaotic attractor [23].

Definition 4.1. An attractor is the limiting trajectory of the representing point in the
phase space, to which all initial modes tend [3].

Definition 4.2. A limit cycle is a closed trajectory in phase space having the property
that at least one other trajectory spirals into it, either as time approaches to infinity or
as time approaches to negative infinity [17].

Proposition 4.2. A limit cycle can exist in nonlinear systems of ODE, the number of
equations in which is n > 2.

Proposition 4.3. A closed trajectory has a critical point in its interior in space R2.

If it is a stable state of equilibrium (critical point), the attractor of the system will
be just a fixed point. If it is a stable periodic motion, then the attractor will be a closed
curve, called the limit cycle [3].

11



4.3 Examples
Consider (6) and
B
B* < 4C, —5 >0=B<0.

Proposition 4.4. If w1 = we = 0, then B > 0 and no critical point is an unstable
focus.

B? —4C = (v1 + v2 — w11 g1 — poWszgs)’—
—4(p1 pawi1W2ag1g2 — H1W11G1V2 — HaWaGalt — i1 fl2Wi2W21G1Gs + V1Vs) =
= v} + 20109 — 201 L1 W11 g1 — 201 faWaaGs + Vs — 2Vl W11g1 — 2V2flaWazgs
FpwT g7 + 2101191 faWasgs + W5 GE — dii a1 Wazg1 G2 + inwi giva
+4p10wa2g201 + 4pi1 pawiaWa1g1ge — V109 =
= (—v1 + vz + prwiig1)” + 2wag2 (2 (V1 — Vs — prwigr) + 2 WiaWa1 1) + HHWG5-

Example 1. Consider p; = ps = 10, vy = v9 = 1 and 6; = 1.2, 0y = —0.7. The

regulatory matrix is
0.5 2
W= ( -2 0.5 ) ' (7)

The characteristic equation for the critical point (0.47;0.47) is (6), where B = —0.48,
C' = 24.66.

Solving the equation we have A\; = 0.2474 — 4.96: and Ay = 0.2474 4 4.96:. The type of
the critical point is an unstable focus. The periodic solution emerges.

NN =
AT
LoV NN = e e S S

02 04 06 08 1.0 12

x1

Figure 1: The phase portrait for the system

(3) with the regulatory matrix (7). The  Figure 2: Solutions (x1(t),x2(t)) for the
type of the critical point is an unstable fo-  system (3) with the regulatory matrix (7).
cus.
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Proposition 4.5. Two-dimensional system of differential equations (3) can have nine
critical points if wi; + wi, > 0.

Example 2. Consider y =40, v; = v, = 1 and ¢, = 0y = 2.5. The regulatory matrix

" W:(g 232). (8)

Figure 3: The phase portrait for the system (3) with
the regulatory matrix (8). Nine critical points.

Proposition 4.6. Suppose that elements wyy and wqy of the regulatory matriz (4) are
zeros. Then the mazimal number of equilibria in system (3) is three. Ezactly one and
exactly two critical points are possible.

Proposition 4.7. Suppose that elements w1 and wye of the regulatory matriz (4) are
not zeros and elements wyo and wey are of opposite signs. Then the Hopf bifurcation may
occur and the system (3) may have a limit cycle.

Proposition 4.8. Periodic solutions in system (4) cannot exist if g—ﬁ + g—ﬁ # 0, where
fi and fy are the right sides of the equations in (4).

5 Three-dimensional (3D) systems

Let us consider the system

( dl‘l 1
- = — N1
dt 1 4+ e~ (wiizi+wiaza+wizzn—01) 11
dl’g 1
@tz _ _ 9
< dt 1+ e—H2(w2121tw2 T2 +wa3mn—b2) V222, ( )
dl‘g 1
— = — V3
\ dt 1+ e—H3 (w3121 tws2z2+w3sr3—03) 343

13



where p;, 0; and v; are the parameters, w;; are the coefficients of the so-called regulatory
matrix

w1 Wiz W13
W =1 wa wa wy |. (10)
W31 W32 W33

The nullclines and the critical points for the system are defined by the relations

( 1 1
xr1 =

U_l 1 + e (wi1z1+wizzetwizzs—01)’

1 1

To = — )
vy 1 + e—#2 (warz1—warw2 +w2sz3—02)
1 1

T3 =

L - U_3 1 + e—h2 (warz1+wozo+wszzz—03)

5.1 Linearized system

The linearized system for any critical point (z7,x3, 2%) is

U = —V1U1 + U1W11 181 + U1Wi2g1Ue + U1W13G1U3,
/
Uy = —VolUg + UoW21 ot + UoWa2Gols + UoW23GalUs,
!
Uz = —V3U3z + U3W31g3U1 + U3W32g3U2 + U3W33G3U3,
where
e~ (wnzitwiaz;+wizz;—01)
91 = v > z ) (11)
[1 + e*lll(w11$1+w12932+w13$3*91)]2
e—,uz(w2127’{+w2236§+w23$§—92)
92 = v v - ; (12)
[1 + e—u2(w21$1+w22$2+w23w3—92)]2
e~ Ha(wa1z]+wsoz;+wsz s —03)
[1 + 6*#3(w31l‘1+w329€2+w33$3*93)]2
One has
Hiwii g — v — A H1W1291 H1W1301
A=) = HaW21 G2 HaWaGa — Vo — A H2W23 g2
H3W3193 H3W3243 H3W33g3 — V3 — A

and the characteristic equation is

det|A — M| = —=A° + N (—v1 — vy — v3 + puwi1g1 + faWargo + f3w3393) + A(g1vsp1 w1+

FH2W22G2V3 + G1G2Wa b1 faW12 — G1G2W11 W21 flo + §193W31W13[41 3 —
—0193W11W33 1 J43 T G2g3W3oWag o b3 — J2G3Wa2W33 o fl3 — U1 (U2 + V3 — goWao llo — 93w33ﬂ3)+
+v9(—v3+g1w11 1 +gswssfiz) )1 (V2 (—V3+g3wss fis )+ go o (V3w gsWaaWas s — g3 WaaWss i3 ) )+

+g1 3 (ve(v3wry + g3(ws1wiz — wirwss)ps) + Gapre(Vs(wWarwis — Wigwas)+

14



+g3(— w31 Waa 3+ W1 W3 W13+ W31 W1aWa3 — W11 W3z Wa3z — W1 WiaWsz+W11Wa2 W33)3)) = 0.

The characteristic equation can be rewritten as
—N + AN+ BA+C =0, (14)

where
A= —(vy + vy + v3) + grwii g + Gowasfia + gswssps,

B = ppawsiwizgigs — paflsWsaWesGags + (i1 oW Wi2G192
—(M2w2292 - U2)(M37~U3393 - U3) - (,u1w1191 - Ul)(ﬂ3w3393 - U3)
—(u1w1191 - Ul)(ﬂ2w2292 - 02),

C = (M1w1191 - Ul)(u2w2292 - U2)(M3w3393 - U3) + f1 Mo h3W21 W32W23G1 G273
+ 1 fho [3W31 W12W23G1 G293 — M1M3w31w139193(ﬂzw2292 - U2)
—#2M3w32w239293(/t1w1191 - Ul) - M1M2w21w129192(,u3w3393 - U3)‘

5.1.1 Facts

Proposition 5.1. The vector field (fi(x1,xe,x3), fo(z1, 22, x3), f3(21, T2, x3)), where fi,
fo and f3 are the right sides of the equations in (9), is directed inward on the boundary
of the domain Q3 := {(x1,z2,23) : 0 < 21 < %,0 < Ty < %,0 < x5 < %}

Proposition 5.2. System (9) has at least one equilibrium (critical point). All equilibria
are located in the open box Q3 = {(x1,x2,23) : 0 < 21 < 11,0 <xy < 12,0 <x3 < %}

v V:

5.2 Ciritical points

The three-dimensional system has three eigenvalues. Two main possibilities exist: either
the three eigenvalues are real or two of them are complex conjugates. A critical point is
stable if all eigenvalues have negative real parts; it is unstable if at least one eigenvalue
has positive real part.

e Node. All eigenvalues are real and have the same sign. The node is stable (unstable)
when the eigenvalues are negative (positive) [97].

e Saddle. All eigenvalues are real and at least one of them is positive and at least
one is negative. Saddles are always unstable [97].

e Focus — Node. It has one real eigenvalue and a pair of complex-conjugate eigen-
values, and all eigenvalues have real parts of the same sign. The critical point is
stable (unstable) when the sign is negative (positive) [97].

e Saddle — Focus. Negative real eigenvalue and complex eigenvalues with positive
real part (unstable focus), and positive real eigenvalue and complex eigenvalues with
negative real part (stable focus). This type of critical point is unstable [46].
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5.3 Chaos

Under chaos in ancient Greek mythology understood the pre-life confusion. Greek “chaos”
is the infinite first everyday mass, which subsequently gave rise to all the existing. Physi-
cists call this science - “nonlinear dynamics”, mathematicians - “chaos theory”, all the
rest - “nonlinear science”.

Chaos is a multifaceted phenomenon that is not easily classified or identified. There
is no universally accepted definition for chaos, but the following characteristics are nearly
always displayed by the solutions of chaotic systems [39].

Characteristics of chaos

e A characteristic of chaotic behavior is the existence of an attractor to which all
sufficiently nearby solutions converge, given sufficient time [23].

e A typical characteristic of chaotic solutions is the geometric form of the attractors.
The attractors typically are twisted and ‘strange’, meaning that they have fractional
(fractal) dimension, although this is not necessarily the case [23].

e Sensitivity to initial conditions [39].

Definition 5.1. A chaotic system is a deterministic system that exhibits irregular and
unpredictable behaviour [47].

Research on chaotic systems had a practical effect since Edward Norton Lorenz established
chaos theory in 1963. Chaos should be expected to be a very common basic dynamical
state in a variety of systems. Chaotic dynamics is very important in different fields such
as robotics, economics, cryptography, chemistry, medicine (studying epilepsy to predict
seizures, taking into account the initial state of the organism) and biology (in the study
of uneven heart rate and an uneven number of diseases) [49].

Proposition 5.3. In dynamical systems that include three or more equations, there may
be even more unusual attractors, which are commonly called strange or chaotic attractors.

Floris Takens (1940 - 2010) a Dutch mathematician known for contributions to the
theory of differential equations, the theory of dynamical systems, chaos theory and fluid
mechanics. Introduced the concept of a “strange attractor”. He was the first to show how
chaotic attractors could be learned by neural networks [7].

Proposition 5.4. It is possible to find a chaotic attractor in differential systems present-
ing chaotic behaviour [55].

Definition 5.2. A strange attractor, (chaotic attractor, fractal attractor) is an attractor
that exhibits sensitivity to initial conditions [39)].

Definition 5.3. A fractal is an object that displays self-similarity under magnification
and can be constructed using a simple motif (an image repeated on ever-reduced scales)

[39].
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5.4 Lyapunov exponents

The Lyapunov exponents are an important tool for the characterization of an attractor
of a finite-dimensional nonlinear dynamic system and their excessive sensitivity to initial
conditions [19]. The Lyapunov exponent is an approach to detect chaos, and it is a
measure of the speeds at which initially nearby trajectories of the system diverge [47].

Relationships between the Lyapunov exponents and the properties and types of at-
tractors:

1.

One-dimensional system. In this case only a stable fixed point can be an attractor.
There exists one negative Lyapunov exponent (LE in short) denoted by LE; = (—).

Two-dimensional system. In 2D systems, there are two types of attractors: stable
fixed points and limit cycles. The corresponding LEs follow:

e (LE,,LEy) = (—,—) - stable point;
e (LE,,LEy) = (0,—) - stable limit cycle (one exponent is equal to zero).

. Three-dimensional system. In 3D phase space, there exist four types of attractors:

stable points, limit cycles, 2D tori and strange attractors. The following set of LEs
characterizes possible dynamical situations to be met:

e (LE,,LEy, LE3) = (—,—, —) - stable fixed point;
e (LE\,LE,, LE;) = (0,—, —) - stable limit cycle;
e (LE,,LE5, LE3) = (0,0,—) - stable 2D tori;

e (LE,,LEy, LE3) = (+,0,—) - strange attractor.

5.4.1 Properties of Lyapunov exponents

1.

The number of Lyapunov exponents is equal to the number of phase space dimen-
sions, or the order of the system of differential equations. They are arranged in
descending order [79].

The largest Lyapunov exponent of a stable system does not exceed zero [47].

. A chaotic system has at least one positive Lyapunov exponent, and the more positive

the largest Lyapunov exponent, the more unpredictable the system is [47].

To have a dissipative dynamical system, the values of all Lyapunov exponents should
sum to a negative number [79].

. A hyperchaotic system is defined as a chaotic system with at least two positive

Lyapunov exponents. Combined with one null exponent and one negative exponent,
the minimal dimension for a hyperchaotic system is four [86].

Proposition 5.5. Only dissipative dynamical systems have attractors [46].

In the thesis for Lyapunov exponents calculation the package “lce.m for Mathematica”
was used [99]. Another Wolfram Mathematica program “Lynch-DSAM.nb” was also used
to check the correctness of Lyapunov exponents calculation [39].
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5.5 Examples

5.5.1 Periodic solutions

Example 1. Consider p; = 5, s = 15, u3 = 5, vy = v9 = vy = 1 and 0, = 1.2, 6, =
0.5, 83 = —0.6. The regulatory matrix of the system (9) is

1 0 2
w=[ 0 10]. (15)
—2 0 1

The nullclines are depicted in Figure 4. There are exactly three critical points.

Figure 4: Nullclines z; - red, x5 - green, x3 - blue of
the system (9) with the regulatory matrix (15).

The characteristic equation for critical point (0.537;0.001;0.346) is
N+ AN + B+ C =0, (16)
where A = —0.616403, B = —5.28938 and C' = —5.61417.

Solving the equation we have \; = —0.99, Ao 3 = 0.188 £ 2.3717. The type of the critical
point is unstable saddle-focus.

The characteristic equation for critical point (0.537;0.5;0.346) is (16), where A =
3.125, B = —6.693 and C' = 15.569.

Solving the equation we have A\ = 2.75, Ao 3 = 0.187 &+ 2.371¢. The type of the critical
point is unstable focus-node.

The characteristic equation for critical point (0.537;0.99;0.346) is (16), where A =
—0.6164, B = —5.289 and C' = —5.614.

Solving the equation we have A\ = —0.995, Ao 3 = 0.187 £2.371:. The type of the critical
point is unstable saddle-focus.

There are three periodic solutions in Example 3. Periodic solutions are stable attrac-
tors. The solutions of the system (6) with the regulatory matrix (15) are depicted in
Figure 5 and Figure 6.
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Figure 5: Example of two 3D limit cycles Figure 6: Three periodic solutions of the
in the system (9) with the regulatory ma- system (9) with the regulatory matrix
trix (15). (15).

5.5.2 Chaotic attractors

Consider

H1 = U2 = 7, M3 = 13,’1)1 = 065, Vg — 0.42,’03 = 01, 91 = 05, 92 = 03, 93 =0.7 (17)

0 1 —-5.65
W = 1 0 0.135 ) (18)
1 0.02 0.03
The initial conditions are
x1(0) = 0.3; 22(0) = 1.5; x3(0) = 0.2. (19)

The characteristic equation for critical point (0.370457;1.59272;0.222436) is

—X+ AN+ B A4+ C =0,
where A = —1.16152, B = —0.430187 and C' = —0.688906.

Solving the equation we have \; = —1.2558, Ay3 = 0.0471391 £ 0.739161:. The type
of the critical point is unstable saddle-focus. The system is a chaotic in the sense that
solutions exhibit non-regular behavior. The self-excited chaotic attractor is depicted in
Figure 7 .

The respective three-dimensional system was studied in [13], [14].
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Figure 8: The graphs of z;(t),7 = 1,2, 3, of
Figure 7: The self-excited chaotic attractor the system (9) with the regulatory matrix
of the system (9) with the regulatory matrix (18).
(18).

Now we change the parameter wqg (that is, the third element in the second row)
in the regulatory matrix (18). The coordinates of a single critical point, values of the
characteristic numbers for this point, are provided. Computations are performed using
Wolfram Mathematica.

Table 1. Results of calculations for the system (9) with regulatory matrix (18),
changing the parameter wys.

H Wa3 x* y* z* Real A Complex A R part Complex A im part H
0.0 0.3651 1.4571 0.1989 -1.4269 0.1322 0.6634
0.05 0.3671 1.5057 0.2073 -1.3714 0.1047 0.6886
0.10 0.3691 1.5562  0.2161 -1.3069 0.0726 0.71698
0.12 0.3699 1.57699 0.2197 -1.2783 0.0583 0.7294
0.13 0.3703 1.5875  0.2215 -1.2634 0.0519 0.7359

0.132 0.3703 1.5895 0.2219 -1.2604 0.0494 0.7371
0.133 0.3704 1.5906 0.2221 -1.2589 0.0487 0.7378
0.134 0.3704 1.5917 0.2223 -1.2573 0.0479 0.7385
0.136  0.3705 1.5938  0.2226 -1.2589 0.0487 0.7378
0.137 0.3705 1.5948  0.2228 -1.2527 0.0456 0.7405
0.138 0.3706 1.5959 0.22299 -1.2512 0.0448 0.7412
0.139 0.3706 1.5969 0.2232 -1.2494 0.0441 0.7418
0.14 0.3706 1.59799 0.2234 -1.2481 0.0433 0.7425
0.145 0.3708 1.6033  0.2243 -1.2403 0.0394 0.7459
0.15 0.3710 1.6087  0.2252 -1.2324 0.0354 0.7493
0.16 0.3714 1.6192 0.2270 -1.2162 0.0274 0.7564
0.18 0.3721 1.6406  0.2308 -1.1826 0.0107 0.7711
0.19 0.3725 1.6514 0.2326 -1.1652 0.002 0.7787
0.20 0.3729 1.6622 0.2345 -1.1473 -0.0069 0.7867
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Table 2. Lyapunov exponents for the system (9) with regulatory matrix (18), 8000

steps
H Was LE, LE, LE, LE, + LE, + LE; H

0.0 0.00228824  -0.133556  -1.03537 -1.16664
0.13  0.00174998  -0.0409256  -1.12505 -1.16423
0.132  0.00241997  -0.0284958  -1.13784 -1.16392
0.133  0.00405175  0.00091658  -1.16866 -1.1637
0.134  0.0200966  0.000487689 -1.18412 -1.16354
0.135  0.0162669  0.000848416 -1.18055 -1.16343
0.136  0.00335708  -0.0065914  -1.16009 -1.16332
0.137 -0.000688284 -0.0214113  -1.14116 -1.16326
0.19 -0.00174416  -0.0102177  -1.14928 -1.16124
0.20 -0.00816703  -0.0105543  -1.14236 -1.16108

1 -0.373617 -0.37358  -0.409939 -1.15714

Calculations showed the following:

e if 0 < wyg < 0.132, then the system (18) has a periodic solution;

e if 0.133 < wqg < 0.135, then the system (18) has a chaotic solution;
e if 0.136 < w3 < 0.19, then the system (18) has a periodic solution;

e if w3 > 0.2, then the system (18) has a stable fixed point.

400

Figure 10: Solutions (xq(t),x2(t),z3(t)) of

Figure 9: Th? periodic solution of t}.le the system (9) with the regulatory matrix
system (9) with the regulatory matrix (18), wa3 = 0.05.

(].8), Wo3 = 0.05.

Now let change wsy values in the regulatory matrix (18).
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Table 3. Results of calculations for the system (9) with regulatory matrix (18),
changing the parameter wss.

H Wag x* y* z* Real A Complex A R part Complex A im part H
0.0 0.4092 1.7387 0.2449 -1.036 -0.0623 0.8666
0.01 0.3892 1.6656 0.2337 -1.1554 -0.0029 0.7966
0.03 0.3530 1.5213 0.2114 -1.3366 0.0873 0.6912
0.04 0.3368 1.4523 0.2007 -1.3996 0.1186 0.6507

Table 4. Lyapunov exponents for the system (9) with regulatory matrix (18), 8000

steps
H Was LE; LFE, LE; LE, + LE, + LE; H
0.0 -0.063377  -0.0643758 -0.406599 -1.16067
0.01 -0.00456357 -0.00807802 -1.14848 -1.16113
0.02 0.0162669 0.000848416 -1.18055 -1.16343
0.03  0.0015434 -0.186553  -0.980366 -1.16538
0.04 0.00381232 -0.0985729  -1.07168 -1.16644

Calculations showed the following:

e if 0 < w3y < 0.01, then the system (18) has a stable fixed point;

e if w3y = 0.02, then the system (18) has a chaotic solution;

e if 0.03 < w3y < 0.04, then the system (18) has a periodic solution.

From calculations we see that small changes in parameter values change the behavior of
the system.

6 Four-dimensional (4D) systems

Consider four-dimensional system

( dJ]l 1
= — U1,
dt 1 4+ e~ (wizi+wiaza+wizzz+wiaza—61)
d(L’Q 1
= — V22,
dt 1 + e—H2(w21z1+warwstwosrs+waars—02) 20
dl’g 1 ( )
T — U3,
dt 1+ e—h3(w31r1+wssre+wasrstwzars—02)
dI4 1
— = — Vg4.
\ dt 1 + e—ta(warz1+waaza+wazws3+wiaza—6s) 4
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The nullclines are given by

( 1
v, =
141 1 + e~ (wizi+wieze+wizzz+wiazs—61)’
1
Voo =
242 1+ e*u2(w21331+w2212+w23x3+w2414*92) ’ (21>
1
Val3 =
33T + e—m3(waiz1+waewa+wazzs+waawa—0a)’
1
Vyly = .
444 1 + e—ta(warz1+wazwa+wizms+wiazs—6a)

\

Critical points are solutions of the system (21).

6.1 Linearized system

The linearized system for critical point (z7, x5, 3, }) is

Uy = —U1U1 + f1W11g1U1 + f1Wi2g1Us + H1W13G1U3 + 1 W14G1U4,
Uy = —Vally + [laWa1 §olly + faWaGols + HalWazGolis + HUalaaGalis,
Uy = —UsUs + [13W3103U1 + [L3W3203Us + [L3W33G3U3 + [L3W34G3Ua,
Uy = —Vgly + [LaWa1 GaUs + [aWazGalls + [LaW34GaUs + [baWaaGatis,

where
e—H1(wnzitwiaz;twizzs+wiaz;—01)

= [1 + e‘“l(wllv"?f+w12w§+w13x§+w14x1—91)]2’
e~ M2 (w2127 +wazl+waswl +waax—02)

g2 = [1 T e—uz(w21x’1‘+w22m§+w23x§+w24xz_92)]27
e~ k3 (w312 +wspwl +wssal +wsar)—03)

g3 = [1 + e*#s(“’311“{+w3zx’2‘+w331§+w34x1703)]2’
e~ Ha(war ] +wipas +wasal +wasw; —0a)

9ga =

[1 + e~ ha(waz] twiei +wazzstwaaz] —94)]2 '

—e

The characteristic equation is

M+ AN+ BN+ MA+ L =0, (22)

where
A= (v1 + 2+ U3+ Vg) — LW11 4 — GoWaslhy — G3W33 3 — GaflaWas,

B = v304 — g1vswii i — G10aWi1fi — GaUsWanfly — GaUaWanfly — §1g2Wa1Wiafi1 [12
T g192W11Waz 1 fl2 — G3V4W33[3 — J1g3W31 W11 43 + G193W11W33[41 [43
= 293W32Wa3 M2 ft3 + G2g3W2oW33 U2 [3 — 1 GaWa1 1 [haW14 — G2GaWa2 2 flaWay
— 304Wa3U3fLaW34 — JaU3[aWaq + G194W11 01 [aWaa + G2GaW2 2 laWas + J3GaW33 M3 [44 W44

+09(V3+ Vs — G111 1 — G3Ws33 3 — GaflaWas) 01 (V2 +V3 Vg — GoWaa o — G3W33 /3 — JaflaWas ),
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M = — g1usvgwiifi1 — Gav3VaWazfla — G192V3W21 W12k fl2 — G1G2V4Wa1 W12 12
+ 9192V3W11Waz 1 flo + 19204 W11 Wazfh1 fla — G1G3V4W31 W13 /41 13
+ 919304W11 W33 U1 k3 — G2g3VaW32Wa3 2 [l3 + §2G3VaWa2W33 (L2 [l3
T 019293 W31 W2 W13 1 h2fh3 — G19203 W21 W32W13 1 h2 b3 — 19293 W31 W12W23 U1 [h2 b3
+ 919293W11W32Waz (1 2 b3 + §1G293W21W12Ws33 41 [h2fl3 — 19203W11Wa2W33 /L1 [12/13
= §19403W41 11 JaW14 + G1G294Wa1 W22 [y o ft4W14 — G192J4W21Wa2 1 2 flaW14
T 019394W41 W33 41 U3 4aW14 — G1G3G4W31Wa3 U1 U3 ha W14 — G20aU3Wa2[l2[la W2y
— §19294Wa1 W11 floflaWas + G1G2G4W11Wa2 01 2 flaW2a + G203 G4 Wa2W33 23 [L4W4
— §2930aW32Wa3 o L3 [LaW2e — G193GaWa1W13[41 43 [LaW3a + §193GaW11Wa3[41 [13[L4W34
— §20394W42Wa3 o fl3[LaW34 + 20304 W22Wa3 213 taW34 + G1G4V3W11 1 haWa4
+ G294V3 W2 laflaWaq + G124 W21 W12fh1 fh2flaWaq — 19204 W11 W21 2 flaWaq
+ 019394W31 W13 41 U3 fhaWag — G1G3G4W11 W33 1 A3 [4aWaa + G203GaW32W23 2 43 [LaW a4
— 929394WW33 a3 Was + V1 (V304 — GoU3Wanfly — GaUsWazfly — G3V4W33 43
— J2g3W32Wa3lafl3 + G2g3WaoWssflafl3 — J2gaWaz b2 flaW2y
— §30aW43 U344 W34 — JaU3HaWaq + G2GaW22 2 flaWaq
+ 9394W33 3 aWay + V2 (V3 + Vg — g3W33fL3 — GaflaWas))
+ va(v3(vy — grwni i — GaptaWas) — g1 (VaW11 + G3W31 W13 M3 — G3W11W33[h3 + GaWa1 faWiy

- g4w11,u4w44) - 93#3(?141033 + GawWyzpigW3g — g4w33u4w44)),

L =uv (UQ(U3(U4 - 94M4w44) - 93#3(”41033 + gaWy3flaW3g — g4w33,u4w44))
- 92#2(03(7)41022 + 94#4(104211124 - w22w44)) + 93M3(U4(w32w23 - w22’w33)
+ g4u4(—w42w33w24 + W32Wy3W2q + W Wo3W34 — WoaWye3W34 — W3aWo3Way + w22w33w44))))
- 91#1(”2(”3(”41011 + 94M4(w41w14 - w11w44)) + 93M3(U4(w31w13 — W11 Ws3)
+ gapra(— Wi W33W14 + W31 WazWra + WarW13W34 — W11 Wa3W34 — W31 W13Wag + W11W33 Wag)))
+ gopo(v3(va(War w12 — Wi1was)
+ gapra(—WarWa2W14 + W1 Wap W14 + WarWiaWas — W11 Wa2Was — Wi Wi2Wag + W11 W22W4a4))
+ gap3(Va(—wa1Wawg + Wa1 W3aWi3 + Wa1W12Wag — W11 W3aWag — Wa1Wi2Ws3 + W11 Wall3s)
+ 94M4(—w21w42w33w14 + W21 W32Wy3W14 + W11 W2W33 W24 — W11 W32W4e3W24
T W2 WaW13W34 — W11 We2W23W34 — W1 W12W43W34 + W11 W22 Wy3W34
+ W4 (—W32Wa3W14 + WaWs3Wig + W3aW13Wag — W12W33Waa — WaaW13W34 + Wi2WagWs34)
— W21 W32W13W44 + W11 W32Wo3Wey + W1 W12W33W4eq — W11 W2 W33W4ey

+ W31 (Wa2We3W14 — WaalWy3W14 — WaaW13Wag + W12Wa3Way + Waal13Wag — W12W23Wa4)))))-

6.2 Critical points

The four-dimensional system has 4 eigenvalues.

e 4D node. All eigenvalues are real and have the same sign. The node is stable
(unstable) when the eigenvalues are negative (positive).

e 4Dstar. All eigenvalues are equal. The 4D star is stable (unstable) when the
eigenvalues are negative (positive).
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e Saddle. All eigenvalues are real and at least one of them is positive and at least
one is negative. Saddles are always unstable.

e Focus — Node. It has two real eigenvalues and a pair of complex-conjugate eigen-
values, and all eigenvalues have real parts of the same sign. The critical point is
stable (unstable) when the sign is negative (positive).

e Node — Focus. It has two real negative eigenvalues and a pair of complex-conjugate
eigenvalues with positive real part. The critical point is unstable.

e Saddle — Focus. Two real eigenvalues have different signs and complex-conjugate
eigenvalues with positive or negative real part. The critical point is unstable.

e Focus — Focus. Two pairs of complex-conjugate eigenvalues. The critical point is
stable when the signs of real parts are negative. The critical point is unstable when
there is at least one positive real part.

6.3 Lyapunov exponents

Relationships between the Lyapunov exponents and the properties and types of attractors:

e (LEy,LFEy, LE3, LE,) = (—,—,—, —) - stable fixed point;

e (LE,,LFEy, LE3, LE,) = (0,—,—, —) - periodic solutions (limit cycles);
e (LEy,LE>, LEs, LE,) = (0,0, —, —) - quasiperiodic solution;

e (LE\,LE>, LEs, LE,) = (+,0,—, —) - strange attractor;

e (LEy,LEy, LE3, LE,) = (4,+,0, —) - hyperchaotic attractor [40].

6.4 Examples

Example 1. Consider the system (20) with the regulatory matrix,

2 0 0
| 2k 0 0

=109 0 k 2 | (23)
0 0 -2 k

where k1 = 0.5, ko = 1815 and py; = ps = p3 = g = 10, v = v =v3 =0y =1, 6, =
1.2, 0, =-0.7,60; =18, 0, = —0.28

The initial conditions are
z1(0) = 0.5; 22(0) = 0.32; 23(0) = 0.4; 24(0) = 0.39.

This system consists of two independent two-dimensional systems. There is exactly one
critical point. The standard linearization analysis provides the characteristic numbers
A2 = 0.2469 £ 4.98751; N34 = 3.4667 £ 4.9215:¢. The type of the critical point is an
unstable focus-focus.
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Figure 11:
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Figure 13: The graphs of periodic solu-
tions (x1(t), x2(t)) of the system (20) with
the regulatory matrix (23), k; = 0.5 and
ko = 1.815.

Figure 14: The graphs of periodic solu-
tions (x3(t), x4(t)) of the system (20) with
the regulatory matrix (23), k; = 0.5 and
ko = 1.815.

Let us change two elements at the right upper (wy4) and left lower (wy4;) corners. Let
wy; = 0.1 and (wy4) values are considered in Table 5.

Table 5.

Results of calculations for the system (20) with regulatory matrix (23)

k1 = 0.5 and ky = 1.815, changing the parameter wy4.

[

A2

A4

Lyapunov exponents H

-1.2

0.189 £ 4.49

3.374 £4.912¢

0; -0.48; -0.89; -0.96)

-1.1

0.206 + 4.586¢

3.379 £ 4.908:¢

(
(0; -0.70; -0.70; -0.87)

-1

0.220 £4.671¢

3.384 = 4.905¢

(0.05; 0; -0.88; -0.98)

-0.9

0.232 £4.745

3.389 £+ 4.902¢

-0.8

0.242 + 4.808¢

3.394 £ 4.899:

(0; -0.27; -0.29; -0.89)
(0; -0.05; -0.58; -0.88)

-0.7

0.250 + 4.862¢

3.399 £ 4.897:

(0.03; 0; -0.26; -0.89)

-0.6

0.256 + 4.906¢

3.405 £ 4.8961

0; -0.20; -0.20; -0.89

-0.5

0.260 + 4.941¢

3.410 £+ 4.89414

-0.4

0.261 £ 4.968¢

3.415 £ 4.893¢

( )
(0; -0.09; -0.35; 0.89)
(0; -0.13; -0.33; -0.89)
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Calculations showed the following:

e if —1.2 < wyy < —1, then the system (20) with the regulatory matrix (23) has a
periodic solution;

e if w4y = —1, then the system (20) with the regulatory matrix (23) is chaotic;

e if —0.9 < wyy < —0.7, then the system (20) with the regulatory matrix (23) has a
periodic solution;

e if wyy = —0.7, then the system (20) with the regulatory matrix (23) is chaotic;
o if —0.6 < wyy < —0.4, then the system (20) with the regulatory matrix (23) has a

periodic solution.

{x1x2} {x3 x4}

]

Figure 15: The graphs of solutions Figure 16: The graphs of solutions
(1(t), x2(t)) of the system (20) with the  (z3(t),z4(t)) of the system (20) with the
regulatory matrix (23), k; = 0.5 and ky =  regulatory matrix (23), k; = 0.5 and ky =
1815, W14 = —1. 1815, W14 = —1.

t

50 100 150

{x3 x4}

Wil ML

. . . .
t
50 100 150 200

3 50 100 150 200 '

Figure 18: The graphs of solutions
(z3(t), z4(t)) of the system (20) with the
regulatory matrix (23), k; = 0.5 and
]ﬁg = 1815, W14 = —0.7.

Figure 17: The graphs of solutions
(x1(t), xo(t)) of the system (20) with the reg-
ulatory matrix (23), k1 = 0.5 and ky = 1.815,
W14 = —0.7.
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0.3 . . . . ' x1

Figure 19: The projection of
4D  trajectories to 2D  subspace

(1(t), x2(t)), w14 = —0.7.

The

Figure 20: projection  of
4D trajectories to 3D  subspace

(xl(t)a xQ(t)a $4(t)), wyy = —0.7.

The dynamics of Lyapunov exponents are shown in Figure 21 and Figure 22.

T
05

0.0

LCEs

—05}F

Lo M‘MKMM

|
0 1000 2000 3000 4000 5000
Steps

Figure 21: The dynamics of Lyapunov ex-
ponents of the system (20) with the regula-
tory matrix (23), k; = 0.5 and ky = 1.815,
wig = —1.

Example 2. The regulatory matrix is

-2 03
0.2

T
05

N

LCEs

—05}F

- l 0 L L L L L L L
0 1000 2000 3000 4000 5000
Steps

Figure 22: The dynamics of Lyapunov ex-
ponents of the system (20) with the regula-
tory matrix (23), k1 = 0.5 and ko = 1.815,
W14 = —0.7.

-0.8 0.5
04 -0.7
1.8 2 (24)

08 —-07 -2 138

and the parameters v; = vo = vy = v4 = 1, 1 = ps = pu3 = pug = 10 and 6;, where



1 =1,2,3,4 is calculated as

( 9 :w11+w12+’w13+w14
1 2 )
9 :w21+w22+w23+w24
2 2 )
P :w31+w32+w33+w34
3 92 )
0 Wy + Wy + Wy3 + Way
4 — .
2
\

0, =125, 0, = —1, 65 = 1.75, 6, = —0.05.

The initial conditions are
x1(0) = 0.4; 22(0) = 0.6; x3(0) = 0.39; 24(0) = 0.38. (25)

The critical point is (0.5;0.5;0.5;0.5). The standard linearization analysis provides the
characteristic numbers A\ 9 = —0.44 £ 4.603¢ and \34 = 4.33 £ 5.135¢. The type of the
critical point is an unstable focus-focus.

x1x2x3x4

Figure 23: The graphs of solutions
(z1(t), x2(t), 25(t), 14(t)) of the system (20) Figure 24: The projection of 4D tra-
with the regulatory matrix (24). jectories to 3D subspace (z1, 2, T3).
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The dynamics of Lyapunov exponents are shown in Figure 25.

» W

L
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-
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Figure 25: LE; = 0.20, LEy, =0, LE3 = —0.75, LEy = —0.92

LE,, LEy, LE3, LE, = (4,0, —, —) is a the self-excited chaotic attractor. The behavior of
the system (20) with regulatory matrix (24) and initial conditions (25) is chaotic.

7 Five-dimensional (5D) systems

The system of ODE consisting of five equations is

(dx
dz
) (20
d
\ % = f5(w51x1 + e w55$5) — U5T5.

7.1 Examples

Example 1. Consider the five-dimensional system (26). Let the regulatory matrix be

11100
01100

wW=|10100 (27)
00001
00010

and gy = o =3 =g = 5 =5, V1 =V =v3 =0y =v; = 1,0, = 15,0, =03 =1 and
94 - 95 - 05
This system consists of one three-dimensional system and one two-dimensional system.
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A0

o

Figure 26: The graph, corresponding to the case of
the regulatory matrix (27).

This system is uncoupled and has one critical point (0.5,0.5,0.5,0.5,0.5). The solution
of the system (26) with the regulatory matrix (27) is stable.

Example 2. Consider the five-dimensional system (26). Let the regulatory matrix be

1 02 0 0
0 10 0 0

W=|-201 0 0 (28)
0 00 05 2
0 00 —2 05

and puy = pz = 0.5, s = 15, g = pus = 10, v1 = v = v3 = vy = vy = 1,
01 =12,60,=0.5,03=—-06, 0, =12, 6; =—0.7.

This system consists of one three-dimensional system, which has a periodic solution de-
picted in Figure 5, and one two-dimensional system, which has a periodic solution depicted
in Figure 1. This system is uncoupled and has three critical points. The solution of the
system (26) with regulatory matrix (28) is periodic.

{x1x3}
07 ”
0.6

0.5

x3

0.6

0.5F

041

0.3F
04

0.2
0.3

0.1

t

100 120 140 160

00 : : : ' x1
Figure 27: The graphs of solutions x;(t), i =

1,3 of the system (26) with the regulatory
matrix (28).

Figure 28: The projection of 5D trajec-
tories to 2D subspace (1, x3).
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06 0.8

Figure 29: The projection of 5D trajectories

to 3D subspace (x1, z9, x3).
(1, @2, 73) Figure 30: The projection of 5D trajectories

to 3D subspace (1, x3, T4).
8 Six-dimensional (6D) systems

The system of ODE consisting of six equations is

( dx
d_tl = fl(’wnﬂfl 4+ ...+ ’U)16I‘6) — V1%,
dx
—2 = folwarzy + ... + wapxg) — V2o,
d
L % = fﬁ(w61$1 + ... w66:c6) — VgXg-

Similar systems of dimensionality two, three, four and of arbitrary dimensionality [58],[63]
appear in various contexts describing neuronal networks [14],[13], genetic networks [89],
telecommunications networks [29] and more. This type models can reflect an evolution in
time ¢ of a network. Networks management and control are possible by changing system
parameters [70], [4].

8.1 Examples

Our intent now is to create a six-dimensional attractor from three-dimensional ones.
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Example 1. Consider the six-dimensional system (29) with the regulatory matrix

k0 -1 0 0 0

1k 0 0 0 0

1o 1k 0 0 o0
W= 0 0 k 0 -1 | (30)

0
0 0 0 =1 ke O
0O 0 0 0 =1 ke

where k1 = ko =1, p; = 5, Qi:%.

3 5

N

\ . o
\ v// -

\\\\ S / A \\

Figure 31: The graph, corresponding to the case of
the regulatory matrix (30).

The initial conditions are

21(0) = 0.046; 25(0) = 0.8; 23(0) = 0.3; 24(0) = 0.7; 25(0) = 0.8; 26(0) = 0.2.

The 6D system has an attractor in the form of a periodic solution generated by a three-

dimensional periodic solution. The projections of this periodic attractor onto three-
dimensional subspaces are shown in Figure 32 and Figure 33.

Figure 32: The projections of 6D trajec- Figure 33: The projections of 6D trajec-
tories to 3D subspace (x1, 29, x3). tories to 3D subspace (x1, x3, T5).

Consider the six-dimensional system (29) with the regulatory matrix (30), where k; =
1, ks = 0.5, pu; =5, 0; = 551
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The initial conditions are
21(0) = 0; 22(0) = 0.4; 23(0) = 0.1; 24(0) = 0.2; 25(0) = 0.1; x4(0) = 0.1.

The projections of this periodic attractor onto three-dimensional subspaces are shown in
Figure 34 and Figure 35.

Figure 35: The projections of 6D trajec-

Figure 34: The projections of 6D trajec- tories to 3D subspace (2, 24, 7).

tories to 3D subspace (x1, z3, x5).

The respective six-dimensional system was studied in [68].

Example 2. We take the three-dimensional system (9) with the regulatory matrix (18),
set of parameters (17) and initial conditions (19). It is depicted in Figure 7. The irregular
behavior of three solutions can be seen in Figure 8.

Consider the six-dimensional system with the regulatory matrix

0 1 =564 0 0 0
1 0 01 0 O 0
1 0.02 0 0 0 0
W= 0 0 0 0 1 —5.64 (31)
0 0 0 1 0 0.1
05 0 0 1 0.02 0

and
M1 = U2 = g = U5 = 7,,&3 = U = 13,1)1 —= Uy = 0.65,’02 = Vs = 0.42,’113 = Vg = 01,

01 =0,=0.5,03=05;=0.3,05 =05 =0.7.

The initial conditions are
z1(1) = 0.68; z2(1) = 0.45; x3(1) = 0.15; 24(1) = 0.68; z5(1) = 0.45; x¢(1) = 0.15.

It would be uncoupled if the element wg; be zero. Then we would have a six-dimensional
attractor which is the product of two identical three-dimensional attractors as in Figure
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Figure 36: The projections of 6D trajec- Figure 37: The projections of 6D trajec-
tories to 3D subspace (4, x5, zg). tories to 3D subspace (z1, 4, Tg).

x1

X3

Figure 38: The projections of 6D trajecto-

ies to 3D sub .
ries to 3D subspace (z1, 3, 7o) Figure 39: The projections of 6D trajec-

tories to 3D subspace (x1, 3, z6).

7. But wg; is set to 0.5. The six-dimensional system is coupled now. The new attractor
exists and some of the three-dimensional projections are depicted in Figure 36 and Figure

37.

The solutions for system (29) with the matrix (31) are depicted in Figure 40 and
Figure 41.

The graphs of solutions have irregular forms. They are different in Figure 40 and
Figure 41 because of the non-zero element wg; .
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{x1,x2, x3} {x4, x5, x6}

-0.51

Figure 40: The graphs of solutions z;(t), Figure 41: The graphs of solutions z;(t),
i = 1,2,3, of the system (29) with the i = 4,5,6, of the system (29) with the
regulatory matrix (31), wg; = 0.5. regulatory matrix (31), wg = 0.5.

9 Sixty-dimensional (60D) systems

The network taken for the study is a realistic biological network, “T cells in large granular
lymphocyte leukemia associated with blood cancer”. A network model considered in
[10],[89], contains 60 nodes and 195 regulatory edges. It was found in [89] that this
network has three attractors, of which two correspond to two distinct cancerous states
(denoted as Cy and C7) and one is associated with the normal state (denoted as N).
The proper selection of the respective forty-eight parameters can drive the system to the
normal state. The existence of needed parameter perturbation was acknowledged. The
attractor network was considered and the main proposition was to arrange experimental
adjustment of parameters in order to achieve the required goal.

Figure 42: The graph of matrix 60 x 60.

To obtain this graph, the “Graphia” program was used. The matrix (43) was written in
the program “Microsoft Excel”.
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9.1 Subsystems
9.1.1 Three-dimensional systems

Example 1. Consider p; = 5, s = 15, u3 = 5, v; = v9 = vy = 1 and 0, = 1.2, 6y =
0.5, 83 = —0.6. The regulatory matrix of the system (9) is

Walz WG4 W20as
W= | wsazs wsay wsas |, (32)
W43 Wehyg Wyas

where woas = —1, weay = woas = 0, wzaz = wzas = 0, wzay = 1, wea3 = wyay = 0, weas =
1. The nullclines are depicted in Figure 44. There are exactly three critical points.

Figure 44: Visualization of nullclines (z; - red, 3 - green, x3 - blue)
of the system(9) with the regulatory matrix (32).

The characteristic equation for critical point (0.0024;0.0006; 0.9997) is
N4+ AN+ BA+C =0, (33)

where A = —3.00215, B = —3.00419 and C' = —1.00204.

Solving the equation we have Ay = —1.01218, Ay = —0.998321 and A3 = —0.991643. The
type of the critical point is a stable node.

The characteristic equation for critical point (0.0024;0.5;0.9997) is (33), where A =
0.739495, B = 4.5184 and C' = 2.77883.

Solving the equation we have \; = —1.01218, Ay = —0.998321 and A3 = 2.75. The type
of the critical point is a saddle.

The characteristic equation for critical point (0.0024;0.9994;0.9997) is (33), where
A = -3.00215, B = —3.00419 and C = —1.00204.

Solving the equation we have A\; = —1.01218, Ay = —0.998321 and A3 = —0.991643. The
type of the critical point is a stable node.
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Figure 45: Visualization of two stable nodes and the saddle
of the system(9) with the regulatory matrix (32).

9.1.2 Four-dimensional systems

Example 1. The regulatory matrix is

Wea7 Weag WAy Wehi10
wrar wWrag Wray Wrhig
Wgar wWgag Wgy Wghig
Wol7 Wolg Woelyg W9l1p

where WeQ7 — W78 — WgQg — WgQ7 — Wo9Q19 — 1,21}6(18 = W9 — WgQ19g — Wra7y —
Wrag = WraA1g = Wely = Wgdg = Wsl1y = Wydg = Wolg = 0 and vy = vy = v3 = v4 = 1,
H1 = 5,,U/2 = 15,,[!3 = 5,,U/4 = 5, 91 = 12, 02 = 057 03 = —0.6, ‘94 = —0.2.

The first critical point is (0.0025;0.00056;0.9997;0.9975). The standard lineariza-
tion analysis provides the characteristic numbers A\; = —0.998321, A\, = —0.991643,
A3 = —0.987669 and \y, = —0.987513. The type of the critical point is a 4D stable node.

The second critical point is (0.00250369; 0.5; 0.999664; 0.997528). The standard lineariza-
tion analysis provides the characteristic numbers A\; = —0.998321, A\, = —0.987669,
A3 = —0.987513 and \y = 2.75. The type of the critical point is a saddle.

The third critical point is (0.00250369; 0.999443; 0.999664; 0.997528). The standard lin-
earization analysis provides the characteristic numbers \; = —0.998321, Ay = —0.991643,
A3 = —0.987669 and \y = —0.987513. The type of the critical point is a 4D stable node.

10 Conclusions

Main results of the Doctoral thesis are:

e Systems of orders two and three are considered with the regulatory matrices of
different structures. The number and the character of critical points are considered.

e For three-dimensional systems and four-dimensional systems chaotic attractors were
considered. Examples were constructed. In the thesis for Lyapunov exponents calcu-
lation the package “lce.m for Mathematica” was used. Another Wolfram Mathema-

39



tica program “Lynch-DSAM.nb” was also used to check the correctness of Lyapunov
exponents calculation.

e Formulas for characteristic numbers of critical points for four-dimensional systems
were obtained. Examples of 4D systems with stable equilibria were constructed.

e Neuronal networks were considered and similarity with the corresponding ODE-type
models was detected.

e Examples of 5D were constructed. These systems possess periodic attractors. The
visualization of attractors of 5D by projecting them into lower dimension subspaces
and considering graphs of components of solutions was made.

e Examples of 6D systems were constructed. These systems possess periodic attractors
and exhibit irregular behavior of solutions. The visualization of attractors of 6D
systems by projecting them into lower dimension subspaces and considering graphs
of components of solutions was made.

e Sixty-dimensional system was considered. The graph of 60 x 60 matrix with the
program Graphia was constructed. Some subsystems of the 60D system were con-
sidered.

The study of gene regulatory networks is important for human life and activity. Both
for the treatment of various diseases such as leukemia, multiple sclerosis, and Alzheimer’s,
and for describing problems and their solutions in economics, psychology, politics, and
many other areas. The more are equations in a system, the more similar it is to the gene
network that occurs in life. The main task is to continue the research and find methods
for studying systems with a large number of equations.
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