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INTRODUCTION

Factors that influence species distributions and 
habitat selection across home ranges are of 
great importance to researchers and wildlife 
conservationists (Baldwin 2009), particularly 
in the face of global climate change (Peterson 
et al. 2002). Climate change is expected to 
cause shifts in species distributions, threatening 
their viability and altering their representation 
in protected areas (Araujo et al. 2004, 2011, 
Thuiller et al. 2006). 

In this paper, we explore the factors governing 
the distribution of Bombina bombina (Linnaeus, 
1761) (Fig.1.)  using an approach based upon 
maximum entropy distribution modeling 
(DM), which importantly can aim at explaining 
ecological relationships in nature (Halvorsen 
2012).
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MATERIAL AND METHODS

We used Maxent (version 3.3.3k), a general-
purpose algorithm that generates predictions 
or inferences from an incomplete set of 
information, which has been introduced for 
the modelling of species distributions (Phillips 
et al. 2006). The maxent approach is based 
upon a probabilistic framework. The main 
assumption is that the incomplete empirical 
probability distribution (consisting of the 
species occurrences) can be approximated by 
a probability distribution of maximum entropy 
subject to certain environmental constraints, and 
that this distribution approximates a species’ 
potential geographic distribution.

Like most maximum-likelihood estimation 
approaches, the maxent algorithm a priori 
assumes a uniform distribution and performs 
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‘very good’, >0.8 ‘good’ and >0.7 ‘useful’ 
discrimination abilities (Swets 1988). The 
logistic output format was used, because it is 
easily interpretable with logistic suitability 
values ranging from 0 (lowest suitability) to 1 
(highest suitability).

Occurrences consisted of 148 B. bombina 
genetic samples from Hofman et al. (2007), 
forming a presence-only dataset (the training 
set). The modeling calculations used the 
environmental data from a buffered polygon 
bounding the study area. The first five principal 
components (PC1-5) of the 35 Bioclim variables 
in the CliMond 1975H dataset (Kriticos et al. 
2014) were employed. These capture more than 
90% of the variance in the full dataset.

RESULTS AND DISCUSSION

The average AUC score for our Maxent model 
was 0.856±0.002, which is considered to be a 
good fit and indicates a good discriminatory 
capacity of the model (i.e., Maxent model was 
significantly better than random in binomial test 
of omission and predicted area curve, Fig.2.).

The absolute and relative importance of 
individual environmental variables as predictors 
of the distribution of the toad can be estimated 
through the training gains when the variable of 

a number of iterations in which the weights 
associated with the environmental variables, 
or functions thereof, are adjusted to maximize 
the average probability of the point localities 
(also known as the average sample likelihood), 
expressed as the training gain (Phillips 2006). 
These weights are then used to compute the 
maxent distribution over the entire geographic 
space. Consequently, this distribution expresses 
the suitability of each grid cell as a function of 
the environmental variables for that grid cell. A 
high value of the function (in units of cumulative 
probability) for a particular grid cell indicates 
that this grid cell is predicted to have suitable 
conditions for the species in question (Phillips 
2006).

There are several aspects of the Maxent 
software that support the interpretation of the 
model results. For example, maxent has a built-
in jackknife (Fig.4.) option through which 
the importance of separate environmental 
data layers can be estimated. It also provides 
response curves showing how the prediction 
depends on a particular environmental variable 
(Phillips 2006). For all model runs in this study, 
we used the default settings for regularization 
and in selecting the feature classes. 

We ran models with 50 bootstrap replicates, and 
assessed model performance using the average 
AUC (area under the receiver operating curve, 
ROC) score to compare model performance. 
AUC values >0.9 are considered to have 

Fig. 1. Foto Bombina bombina (yellow ventral 
side) from Kanev.

Fig. 2. The receiver operating characteristic 
(ROC) curve generated in Maxent, showing 
an average of 50 repetitions of the model; the 
dark blue range shows the mean of the standard 
deviations.
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for the toad in this study generally agree well 
with the corresponding variable contributions 
(percentage and permutation importance, see 
Table) and response curves (Fig.4., exemplified 
by the response to PC1 and supported by the 
linear component of the correlation between 

interest is used in isolation and excluded from 
the whole set of variables in the Maxent runs. 

This test indicated that the layer with the most 
useful information by itself is the PC1 (primarily 
a temperature dominated variable with strong 
contributions from the “minimum temperature 
of coldest week” and “mean temperature of 
coldest quarter”). The environmental variable 
that decreases the gain the most when it is 
omitted is PC4 (mostly “radiation during the 
wettest quarter”, i.e. in the summer), which 
therefore appears to have the most information 
that isn’t present in the other variables. 

The responses of the most important 
environmental variables in the predictions 

Fig. 3. Results of jackknife test of variable importance, using training gain. The jackknife test in 
blue bars shows individual environmental variable importance relative to the red bar which shows 
all environmental variables. Light blue bar shows whether a variable has any information that 
isn’t present in the other variables, and a dark blue bar shows whether a variable has any useful 
information by itself. Values shown are averages over replicate runs.

Fig. 4. Response of Bombina bombina to PC1: 
x-axis – PC scores; y-axis – logistic output 
(probability of presence).

Fig.5. Correlation between modelled habitat 
suitability and  “mean temperature of coldest 
quarter”.

Table 1. Analysis of variable contributions for 
Bombina bombina

Variable Percent 
contribution

Permutation 
importance

PC1 38 37.9

PC2 17.2 14.1

PC3 16.4 18.4

PC4 14.4 14.5

PC5 14 15.1
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the modelled habitat suitability and  “mean 
temperature of coldest quarter”(r=0.665, 
p<0.01, Fig.5.).

The following table gives estimates of relative 
contributions of the environmental variables 
to the Maxent model. To determine the first 
estimate, in each iteration of the training 
algorithm the increase in regularized gain is 
added to the contribution of the corresponding 
variable, or subtracted from it if the change to 
the absolute value of lambda is negative. For 
the second estimate, for each environmental 
variable in turn, the values of that variable on 
training presence and background data are 
randomly permuted. The model is reevaluated 
on the permuted data, and the resulting drop in 
training AUC is shown in the table, normalized 
to percentages.

CONCLUSIONS 

DMs can enhance our knowledge on the ecology 
of species, help to quantify their requirements. 
In turn, these may be used to predict responses to 
climate change. Modeling results, for instance, 
show that warming winters should considerably 
favor B. bombina, particularly in terms of 
survival. However, even if B. bombina could 
theoretically benefit from changing climatic 
conditions in the future, this does not necessarily 
imply a raise in population sizes, as dispersal 
and habitat suitability may be compromised 
by other factors, particularly anthropogenic 
(Dolgener et al. 2013). In addition, global 
warming has the potential to cause adverse 
changes in breeding phenology (Blaustein et 
al. 2001), disease-mortality dynamics (Daszak 
et al. 2003; Pounds et al. 2006) and food 
supply (Donnelly, Crump 1998). Nevertheless, 
given the complexity of the task, we consider 
a deeper use of DMs will add to improve our 
understanding of the environmental conditions 
important for habitat selection of B. bombina and 
support the development of suitable proactive 
conservation strategies designed to maintain 
population viability both from a demographic 
and evolutionary point of view.
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