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abstract

Investigation of predator-prey interaction between fish species within lakes represents 
difficulties not only in data collection (David et al., 2006; Jost & Arditi, 2000), but further also 
at the stage of computations as well as in interpretation of results. Through identification 
of non-stationary coefficients of the discrete Lotka-Volterra model the present paper 
puts forward an interpretation of modeling results based on the aggregate catch 
biomass of the considered predator-prey species in Lake Razna (Latvia). The respective 
data were collected over a period of time of several decades. Modeling of the observed 
predator-prey biomass involved a general discrete non-stationary Lotka-Volterra-type 
model, for which the population of predators was determined not only by the number 
of prey consumed but also by other factors, which were not directly measured in the 
data collected. The paper presents identification of non-stationary coefficients of the 
Lotka-Volterra simulation model which resulted in obtaining quantitative characteristics 
of species dynamics. Basing on the modeling results, the paper discusses the obtained 
dependencies for the two interacting predator and prey species in Lake Razna.
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INTRODUCTION 

The paper presents results of analysis of 
predator-prey interaction in Lake Razna, 
Latvia based on catch values of predators 
and prey biomass for the period of time 1950-
1968. The analysis based on identification 
of non-stationary coefficients of the Lotka-
Volterra simulation model allowed evaluating 
quantitative characteristics dynamics of the 
species. 

The validation of the model used in the research 
and, consequently, proof of its adequacy was 
performed through numerous experiments. 
A further proof of models adequacy is the 

consistency of its results with those obtained 
from independent research, whereas the 
higher the number of independent research 
available for the reference, the higher level 
of validation has the model. Since research of 
discrete non-stationary equations of Lotka-
Volterra-type models is a relatively new 
research field (Vano et al., 2006; Liu & Xiao, 
2007; Peitgen & Richter, 1986), at the present 
time other non-stationary models adequately 
describing predator-prey relationships in a lake 
environment with identified coefficients are 
unknown to the authors. Thus it is impossible 
to obtain comparative characteristics of the 
results vis-à-vis other models. 
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INpUT DaTa

The analysis is based on the data collected 
over the period of time 1950-1968 concerning 
biomass in Lake Razna. The input data for the 
period of nineteen years represent two sets of 
data, namely Predator HTS(ti) and biomass of 
prey PTS(ti) at discrete points of time ti: 

PTS(t)  = {…, PTS(t7), PTS(t6), …, PTS(t2), PTS(t1)},
HTS(t) = { …, HTS(t7), HTS(t6), …, HTS(t2), HTS(t1)}. 

The respective time series of the predator and 
prey biomass catch observations (in tons) at 
discrete points of time ti are depicted in Figure 
1 left-hand-side pane, whereas the right-hand-
side graph features the same data in scatter 
plot form in predator/prey axes. 

In previous works it was attempted to fit 
the constant parameters of the stationary 
Lottka-Volterra equation for the input time 
series (David et al., 2006; Jost & Arditi, 2000; 
Gómez & Vélez, 2010; Cao, 2008). However, 
these parameters for fish populations in a lake 
environment may vary significantly over time, 
therefore the present work concentrates on 
evaluation of dynamically varying parameters 
and brings forward a discussion on the reasons 
of these variations. 

Figure 1. Left-hand side pane presents time series of observations of annual biomass catch values 
(in tons) of predator and prey species (predator time series depicted thick) in Lake Razna (Latvia). 
The right-hand-side pane features the same data as scatterplot in the predator/prey coordinates. 

applICaTION Of lOTka-VOlTeRRa mODel

A general discrete non-stationary Lotka-
Volterra model (Liu & Xiao, 2007; Peitgen 
& Richter, 1986; Freedman, 1980; Brauer & 
Castillo-Chavez, 2012; Murray, 2003) with 
unknown stationary parameters Rp(ti) , Rh(ti) , 
Cp(ti) , Ch(ti), a(ti), b(ti)  is formalized as follows: 

P(ti+1) = Rp(ti)*P(ti)*(1-P(ti)/Cp(ti)) + a(ti)*P(ti)*H(ti) 
H(ti+1) = Rh(ti)*H(ti)*(1-H(ti)/Ch(ti)) + 
b(ti)*a(ti)*P(ti)*H(ti) 

The equations describe prey and predator 
species population growth under the 
conditions of usual interaction between the 
populations through biomass reproduction in 
the next period with coefficient a(ti). From the 
first equation it follows that at time ti+1 which 
is the next point of time following ti, biomass of 
the prey P(ti+1) is determined by a logarithmic 
increase in population of prey species, less 
prey biomass consumed by the predators 
a(ti)*P(ti)*H(ti). The first term of the equation 
(2) defines the increase of the prey population 
with the parameters of growth rate Rp(ti) and 
carrying capacity Cp(ti).

An analogical equation defines the population 
of the predators H(ti+1). Natural biological 
conditions limit the coefficients to the 
following ranges: a(ti)<0, b(ti)<0, Cp(ti)>0, 
Ch(ti)>0, 0<b(ti)<1. 

(1)
(2)
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In a general case, the population growth 
factors cannot be limited to the consumed 
prey only; therefore, logarithmic growth was 
also assumed for the population of predators. 

The first step of the research is finding such 
parameters of the model Rp(ti), Rh(ti), Cp(ti), 
Ch(ti), a(ti), b(ti) that the error of the model Emodel  
does not exceed the initially defined maximum 
error level Emax at each discrete point of time ti  
(i =1,2,…,19):

E(i)model =  max{Abs[(PTS(ti) - P(ti))] ,
 Abs[(HTS(ti) -  

H(ti))]} < Emax                                                              (3)

In case the inequality (3) holds at all points 
of discrete time ti  (i=1,2,…,19), the error of 
the model will not exceed the value of the 
absolute deviation Abs[(PTS(ti)-P(ti))] for the 
prey or the value of the absolute deviation 
Abs[(HTS(ti)-H(ti))] for the predators. The value 
of Emax is initially set and this value depends 
on the chosen level of model fitting to the 
observations. Thus, for identification of the 
parameters of the model the criterion E(i)model 
should be minimized using not less than four 
observations PTS(ti-1), HTS(ti-1), PTS(ti), HTS(ti)  for 
each pair of times [ti-1, ti]. 

 aNalysIs aND INTeRpReTaTION Of ResUlTs

There have been calculated coefficients of 

equations (2) which were later used for cal-
culation of biomasses of prey and predators, 
which are Pm(R) and Hm(R) respectively. 
Figure 2a presents a comparison of the mod-
eled and observed data. It can be seen that the 
modeled data using equation (2) with coeffi-
cients obtained earlier show a high degree of 
modeling precision. 

Let us consider peculiarities in the dynamics 
of the identified coefficients of the equations 
(2). Figure 3 presents the graphs of carrying 
capacity and growth rate of the prey 
population. Since equations (2) belong to the 
so-called determined chaos type of equations 
(Vano et al., 2006), sensitivity of the solutions 
to minor variations of the initial data can be 
very high. Both high precision level of the 
observations of the biomass catch records 
as well as the transfer of its values on the 
value of the whole respective population 
cannot be assumed, so this causes a certain 
level of error. Since the time frame of the 
observations is rather short and there can 
be observed significant deviations from the 
average, application of ‘moving average’ type 
of statistical methods to the problem in focus 
proved to be inefficient. Therefore, there was 
applied a non-linear filter 4253H implemented 
in the Statsoft Statistica software (Hill & 
Lewicki, 2007).

Figure 2. Observations (solid line) and Lotka-Volterra modeled data (dotted line) of the annual 
biomass catch in Lake Razna. X-axis represents time in years, Y-axis represents biomass in tons. 
Left-hand side pane presents predator data, whereas in the right-hand side pane prey data are 
presented. 
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Interpretation of carrying capacity values Cp(ti) 
and Ch(ti) may represent certain interest for 
the research. Variations in values of carrying 
capacity Cp(ti) over time may be caused 
among other factors by the nutrients level of 
the prey species. Unfortunately, such related 
observations cannot be obtained, thus leaving 
possible only estimation of Cp(ti) values. 

Analyzing presented carrying capacity of 
the prey presented in Figure 3 (left-hand 
side pane), there can be assumed a 5-year 
cyclical pattern of lake capacity. Observing 
the filter-processed graph, it can be noted 
that the capacity of the lake increased more 
than thrice over the last years of the period 
considered. The same should also be observed 
in other related indirect measurements, which, 
however, currently lies outside the scope of the 

Figure 3. Dynamics of variations in coefficient values of carrying capacity Cp(ti) and growth 
rate Rp(ti) of prey of the general Lotka-Volterra discrete time equation. The thin line represents 
identifying parameters, whereas the thick line represents the filter-processed values (4253H 
filter). 

present research. Should it be possible to find 
indirect proof of such variations, this would be 
a solid contribution to the verification of the 
model presented in the research. The 4253H 
filter-processed graph of the prey population 
growth rate (Figure 3, right-hand side) reveals 
presence of two peaks of prey growth rate 
which do not coincide with the maxima of the 
carrying capacity. 

The carrying capacity graph for the predators 
(Figure 4, left-hand side pane) shows that the 
capacity of the lake with regard to the predator 
species is virtually constant for the whole 
period in focus. The smoothed graph of the 
dynamics of the predator population (Figure 
4, right-hand side pane) does not feature any 
notable deviations, although it fluctuates 
around its average with the magnitude of 

Figure 4. Dynamics of the coefficients of Ch(t) and Rh(t) for predators and the 4253H filter-
processed values (thick line). 

Investigation of predator-prey interactions between fish populations in lake RAZNA (Latvia) with general discrete
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1.5-2 times but not exceeding the value of 3. 
However, it should be noted that the equation 
(2) for the predator population differs from the 
traditional Lotka-Volterra formulation when it 
is assumed that in the trophic chain predators 
are only prey-dependent.

The term P(ti)/Cp(ti)=ERp(t) in the equation 
(2) represents environmental resistance 
presented by the environmental conditions to 
limit a species from growing out of control or 
to stop them from reproducing at maximum 
rate. Environmental resistance includes a 
mixture of abiotic factors such as temperature 
to limit the organism for expressing its full 
capacity to reproduce. 

Figure 5 illustrates environmental resistance 
graphs for the prey and the predators. At 
ERp(t)=1 annual biomass increase equals 
zero. From Figure 5 it follows that apparently, 
for a long period of time the lake provided 
a relatively stable level of environmental 
resistance for the prey biomass at an average 
level of ERp= 0.4, however, by the end of the 
period in focus the value dropped drastically 
to the value of ERp= 0.1. This drop occurs 
simultaneously with the carrying capacity 
Cp(ti) increase observed in Figure 3. 

The environmental resistance of the predators 
illustrates a stable pattern, as it follows from 

Figure 5. Left-hand side graph portrays the environmental resistance of the prey, whereas the 
right-hand side pane features the same of the predators. The thick line represents 4253H filter-
processed values.

Figure 5 (right-hand side graph). The average 
value of the environmental resistance of the 
predators lies around the value of 0.7 which 
indicates a weak dependency of the predator 
biomass on other sources of food, therefore it 
might be concluded that the main source of 
predators’ biomass increase is attributable to 
the prey species considered in the research.  

Figure 6 features graphs of the identified 
coefficients a(ti) and b(ti) from the equation (2). 
The value of the filter-processed coefficient 
b(R)4253H varies insignificantly within the 
range of values of 0.10-0.13, whereas its 
sharp peak in the earlier observations is 
to be explained by the edge effect in the 
calculations. The coefficient b(R)4253H 
represents efficiency of prey-predator biomass 
transformation. The most constant values of 
the coefficient indirectly assumes a constant 
predator diet, which is in turn attributable to 
the large area of Lake Razna. This possibility 
is also underpinned by the stable values of 
prey biomass consumed by the predators, as 
it follows from the biomass dynamics graph 
Hp(t) featured in Figure 8. 

In order to analyze interaction of the 
populations let the equation (2) to be 
interpreted as a sum of the two biomasses. In 
each of the equations the first term depicts 
annual growth of the prey or predator biomass, 
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whereas the second term describes the effect 
of annual cross-population interaction. This is 
formalized in the following way:

P(ti+1) = Pc(ti) + Ph(ti),
H(ti+1) = Hc(ti) + Hp(ti) ,                                           (4)

where :
Pc(ti) = Rp(ti)*P(ti)*(1-P(ti)/Cp(ti)) ;
Ph(ti) = a(ti)*P(ti)*H(ti) ;
Hc(ti) = Rh(ti)*H(ti)*(1-H(ti)/Ch(ti)) ;
Hp(ti) = b(ti)*a(ti)*P(ti)*H(ti) .                                   (5)

In the equation (4) above Pc(ti) stands for prey 
biomass which could have appeared over 
the period of time of [ti, ti+1] in the absence 
of the predator species. The term Hp(ti) 
defines predator biomass attributable to the 
consumed prey Ph(ti) over the period of time 

Figure 6. Coefficient a(t) of prey biomass consumption by the predator (left-hand side graph) and 
coefficient b(t) of food transformation (right-hand side pane). The thick line represents 4253H 
filter-processed values.

[ti, ti+1]. Thus, Hp(ti) stands for predator biomass 
which linearly depends on the consumed prey 
Ph(ti) with the varying over time coefficient b(ti) 
of predator-prey biomass transformation. 

The following paragraphs present the graphs 
of the respective biomasses as well as brought 
forward a discussion on interpretation of 
the results. As in previous cases, for the ease 
of the analysis the graphs contain the filter-
processed values. 

The left-hand side graph in Figure 7 may 
be interpreted as the dynamics of the prey 
population biomass Pc(R) in the absence of 
predators. The filter-smoothed line presents 
wave-like dynamics of prey biomass over 
time. The right-hand side graph in Figure 7 
presents prey biomass Ph(R)4253H taking 

Figure 7. Left-hand side pane portrays increase in prey biomass in absence of the predator 
species. The right-hand side pane presents annual losses attributable to predators. Thick line 
represents the same data processed with 4253H filter.

Investigation of predator-prey interactions between fish populations in lake RAZNA (Latvia) with general discrete
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into consideration biomass losses due to 
predators. The latter mirrors the dynamics of 
biomass Pc(R)4253H.

Figure 8 illustrates the predator biomass 
increase obtained through sources of nutrition 
other than the prey. These unidentified sources 
account for a substantial part of total gained 
biomass by the predators, as it follows from 
the Hc(R)4253H plotted on the right-hand side 
graph in Figure 8. 

In conclusion, Figure 9 presents a flowchart 
wrapping up the non-stationary discrete 
Lotka-Volterra LV33 equations (2) employed 
in modeling and identification of coefficients. 
The flowchart concisely illustrates the 
dynamics of predator-prey interaction in Lake 
Razna as modeled in the present paper. 

CONClUsIONs

The given paper presents an attempt to 
interpret numerical estimations of the 
coefficients of the general discrete Lotka-
Volterra model for observation of prey and 
predator population catch in the lake of Razna 
(Latvia). Unfortunately, the scarcity of the 
observations does not allow -performing an 
acceptable statistical assessment of the results. 
Certain difficulties represent procedures of 
identification of non-stationary coefficients 
of the general discrete Lotka-Volterra model 

Figure 8. Left-hand side graph presents predator biomass gained for the account of the consumed 
prey with coefficient of biomass transformation b(t). The right-hand side pane represents the 
predator biomass gained from other unidentified sources. Thick line represents the same data 
processed with 4253H filter.

(Liu & Xiao, 2007; Jost & Arditi, 2000; Jost & 
Arditi, 2001). The principal confirmation of 
the adequacy of the model is compliance of 
its results with the historically observed data. 
Besides that, the features of the modeled 
object comply with independent research. 

Since research of Lotka-Volterra model is 
a relatively new field of academic research 
(Vano et al., 2006; Liu & Xiao, 2007; Peitgen & 
Richter, 1986), other non-stationary models 
with identified coefficients of predator-prey 
interactions within lake habitats are unknown 
to the authors. Thus, it is not possible to obtain 
a comparative evaluation of the obtained 
result with alternative models. However, 
the results contain implications for future 
research as well as for indirect verification of 
the model. For instance, the coefficient of 
biomass transformation between the species 
b(ti) having the value of -0.12 may represent 
academic value for future experimental 
research.
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